Светоизлучающие диоды Для волоконно-оптических систем
Перспективным источником света для волоконно-оптических систем (ВОС) служит СИД. Генерирование светового излучения в нем происходит так же, как и в лазерном диоде (ЛД), но из-за отсутствия оптической обратной связи СИД является некогерентным источником. Первый СИД из арсенида галлия, пригодный для цели оптической связи, был изготовлен
в 1962 г. Ширина спектра излучения СИД из арсенида галлия обычно составляет 3000 нм, т. е. по крайней мере в 20 раз шире, чем у лазеров. СИД излучает на многих пространственных модах. Поскольку число мод, которое может в нем распространяться не ограниченно, то адекватную эффективность ввода излучения в светодиод можно получить только при использовании многомодового светодиода. СИД, предназначеные для волоконно-оптической связи, должны иметь малую светоизлучающую поверхность и обладать большой энергетической яркостью.
Примерами таких диодов является диод Барраса и диод с краевым излучением. Диод Барраса излучает свет из небольшого круглого пятна диаметром приблизительно 50 мкм в направлении, перпендикулярном плоскости перехода (рис. 5.21).
Рис. 5.21. Типы СИД, применяемых в волоконно-оптических системах: а — СИД, излучающий через поверхность (типа Барраса), со световодом, приклеиваемым к излучающей поверхности; 6— СИД того же типа, но снабженный интегральной линзой с высоким показателем преломления для улучшения преобразования электрической энергии в излучаемую оптическую мощность; в — СИД с краевым излучением
Геометрия диода с краевым излучением аналогична геометрии лазера с полосковым контактом —- излучает параллельно полосковому переходу. По сравнению с лазерами СИД отличаются простотой, так как у них зависимость мощности выходного излучения от тока возбуждения остается практически линейной и мало изменяется во времени.
Поскольку нет резко выраженного порога, то нет и необходимости слишком тщательно регулировать пиковый ток возбуждения, так как прибор вряд ли выйдет из строя при прохождении через него небольшого тока перегрузки; кроме того, с помощью простых температурных датчиков и управляющих устройств с разомкнутым контуром можно осуществить компенсацию различных температурных эффектов. При работе в системе связи СИД менее привлекателен, чем лазер из-за большей ширины линии излучения и меньшей яркости; это означает, что он обычно генерирует меньшую мощность и заставляет обращать особое внимание на дисперсию в материале.
Тем не менее СИД твердо сохраняют свои позиции благодаря низкой стоимости и простоте эксплуатации и во многих случаях вполне могут заменить лазеры, отвечая требованиям разработчиков систем, в которых лазер лишь незначительно расширил бы рабочие пределы (запасы), что на практике оказывается совсем не нужным. Так как характеристики излучения СИД малочувствительны к рабочим условиям, то при проектировании возможности выбора схем сужаются, а конструктивные решения соответственно упрощаются. В общем случае необходимо сначала оценить мощность, направляемую в светодиод, найдя произведение яркости источника с заданным углом ввода на площадь сечения светодиода, и затем оценить эффективность стыковки одного с другим. Ширина линии излу
Чения источника существенно не меняется, так что легко можно вычислить дисперсию в материале, которая вместе с модовой дисперсией и шириной импульса позволяют оценить чувствительность приемника. Длительность возбуждающего импульса можно несколько уменьшить, чтобы снизить потери мощности в приемнике.
Время отклика (постоянная времени) СИД не равно нулю, и при использовании прибора в системе с высокой скоростью передачи информации это следует принимать во внимание. Время нарастания у типовых приборов с высокой яркостью лежит в интервале (2...4) не и поэтому может стать ограничивающим фактором. При необходимости можно пожертвовать яркостью ради быстродействия, что для специальных применений может оказаться вполне оправданным.
Преобразование электрической энергии в оптическую представляет большой интерес для разработчиков высокоэффективных систем. Внутри самого СИД превращение электрической энергии в оптическую происходит с очень большим кпд. Значительная часть зонной оптической энергии впоследствии теряется прибором или поглощается, превращаясь в тепловую энергию. Создавая приборы малой площади, т. е. меньшей, чем площадь поперечного сечения светодиода, удается увеличить яркость при данном токе. А применение линзовой системы с большой числовой апертурой позволяет увеличить излучающую поверхность СИД и тем самым «заполнить» торец светодиода, благодаря чему увеличивается эффективная собирающая апертура прибора, который соединяют со светодиодом. Таким путем можно увеличить отдаваемую прибором мощность при заданном токе возбуждения. На основе этого принципа были изготовлены СИД со встроенными отрезками световодов и линзами.
Для ВОС пригодны СИД трех типов. Их конструкции изображены на рис. 5.21. Здесь: 1 — световод; 2 — клей; 3 — излучающая область; 4 — полусферическая линза с высоким показателем преломления; 5 — структура лазерного типа; 6 — длина контакта определяет размеры излучающей области. У простых плоскостных приборов или приборов Барраса площадь излучающей поверхности обычно меньше площади сердцевины светодиода, торец которого как правило размещают в непосредственной близости от этой поверхности. Такую конструкцию можно применить и для приборов меньшей площади, установив собирающую линзу с большей эффективной числовой апертурой (см. рис. 5.21, б). Наконец, на рис. 5.21, в показана совершенно иная структура, которая более подходит для лазеров, используемых в ВОС, и представляет собой СИД с краевым излучением. Принцип ее работы основан на излучении вдоль перехода, соединяемого со световодом точно так же, как и в случае лазера. Излучение из этой структуры некогерентно, хотя здесь может происходить некоторое уменьшение спектральной ширины линии сверхизлучения из-за усиления. В состоянии сверхизлучения происходит одновременное увеличение яркости и сужение спектральной линии, но прибор при этом не обладает экстремальной нелинейностью, свойственной лазерам, что дает возможность использовать очень простые устройства управления.
Для оптимизации ввода излучения в световод были разработаны СИД с краевым излучением и относительно толстым световодным слоем, расположенным около активного слоя и имеющим несколько меньший показатель преломления. Сверхизлучение в этих приборах подавляется, так как свет, распространяющийся в световодном слое, лишь очень слабо связан со светом в области усиления, благодаря чему приборы имеют исключительно линейные характеристики. В отличие от приборов, обладающих значительным сверхизлучением, поглощающие области, образующиеся в активном слое СИД с краевым излучением, по мере их старения слабо влияют на параметры выходного излучения.
Другим перспективным типом светоизлучающих диодов для ВОС являются суперлю - минесцентные диоды (ССИД). Фактически это усилители спонтанного излучения без об-