СПОСОБЫ ПАЙКИ. ПО ИСТОЧНИКУ НАГРЕВА
Распространение тепловой энергии в пространстве осуществляется тремя способами — теплопроводностью, конвекцией и излучением.
Теплопроводность — теплообмен, при котором происходит атомарно-молекулярный перенос теплоты от частиц с более высокой энергией к частицам с меньшей энергией в рассматриваемом объеме пространства.
Распространение тепловой энергии от нагреваемой поверхности в глубь твердого тела происходит только теплопроводностью. Скорость распространения тепловой энергии и изменения температуры по объему нагреваемого тела характеризуется коэффициентами теплопроводности.
Теплопроводность неметаллических жидкостей и газов на несколько порядков меньше теплопроводности твердых металлов и сплавов. Поэтому теплота в жидкостях и газах распространяется практически только конвекцией и излучением.
Конвекция — это процесс переноса теплоты путем перемещения в пространстве отдельных объемов жидкости или газа, нагретых до различной температуры. В самой движущейся среде перенос теплоты осуществляется за счет теплопроводности. Удельный конвективный тепловой поток, переносимый жидкостью или газом с плотностью р, кг/м3, определяется по формуле gK = = рvH, где v — скорость потока жидкости (газа), м/с; Н — энтальпия, Дж/кг.
Коэффициент теплоотдачи ак характеризует теплопроводность окружающей жидкости или газообразной среды и численно определяет интенсивность теплоотдачи поверхности тела. Коэффициент теплоотдачи при пайке зависит от конструкции паяемого изделия, его габарита, массы, температуры и скорости движения окружающей среды, ее физических свойств. Наибольший коэффициент теплоотдачи имеют жидкие расплавы солей и металлов (ак = 232-М163 Вт/(м2*К)). Поэтому скорость нагрева деталей в них, особенно при низкотемпературной пайке, в 3—6 раз выше, чем при нагреве в печах с газовой атмосферой.
Излучение — процесс распространения тепловой энергии в виде электромагнитных волн. Электромагнитные волны возникают вследствие движения заряженных частиц — электронов и ионов.
Тепловая энергия передается электромагнитным излучением с длиной волны А, = 0,44-800 мкм, т. е. световым излучением. Радиационный тепловой поток зависит от температуры и длины волны (закон Планка). С повышением температуры тела большую часть тепловой энергии переносит тепловое излучение, а меньшую — световое излучение.
Если распространение тепловой энергии осуществляется одновременно несколькими способами, то говорят о сложном теплообмене. Так, перенос теплоты теплопроводностью и конвекцией называют конвективным теплообменом, теплопроводностью и излучением — радиационно-кондуктивным, теплопроводностью, конвекцией и излучением — радиационно-конвективным теплообменом. В практике нагрева при пайке встречается как простой, так и сложный теплообмен.
Нагрев собранных под пайку изделий или сборочных единиц может быть локальным или общим. Степень локальности зависит от тепловой мощности источника теплоты: чем она больше, тем по меньшей поверхности (объему) может быть осуществлен нагрев соединяемых деталей до температуры пайки за время нагрева тн. Локальность нагрева определяется отношением площади нагреваемой поверхности SH (объема VH) ко всей площади поверхности деталей изделия So (Ко). Если SH/So=l, то нагрев общий, если SH/S0< 1, то нагрев локальный. Локальный нагрев при пайке обусловливает развитие меньшего температурного градиента в соединяемых деталях, чем при сварке плавлением, а следовательно, и развитие меньших тепловых деформаций и растягивающих внутренних напряжений в готовом, изделии. Различные способы нагрева имеют свои преимущества и недостатки, которые необходимо учитывать при их выборе для пайки изделия.
Нагрев деталей с поверхности характерен для большинства способов. Нагрев в объеме происходит только при прямом электро - контактном и при некоторых режимах индукционного нагрева.
При низкотемпературной пайке форма деталей вследствие тепловых деформаций не изменяется, уменьшено окалинообразо - вание паяемого материала; такая пайка более проста в исполнении и более экономична, чем высокотемпературная пайка, и может обеспечивать достаточно высокую надежность паяных соединений.
Важнейшим преимуществом низкотемпературной пайки является возможность ее осуществления на тонких пленках и микроминиатюрных деталях. Хорошая теплопроводность и электрик ческая проводимость припоев и паяных соединений, возможность соединения разнородных материалов, простота окончания процесса пайки, возможность применения вакуумной, абразивной и ультразвуковой пайки обеспечивают ведущую роль низкотемпературной пайки при создании изделий в электронике и, особенно, в микроэлектронике [42]. Важнейшими способами низкотемпературной пайки по источнику нагрева являются пайка паяльником, погружением в жидкий припой, волной припоя и конденсационная.
Низкотемпературная пайка также нашла применение при соединении медных труб, работающих под давлением 1—4 МПа, при нагреве до 110 °С; при изготовлении трубчатых теплообменников, сосудов для хранения жидкого кислорода и различных сантехнических и отопительных систем в технике и других областях.
К важнейшим преимуществам высокотемпературной пайки относятся возможность изготовления изделий окончательного размера, отсутствие оксидов на поверхности деталей, получение вакуумно-плотных и герметичных соединений, работающих в условиях высоких давлений, возможность ступенчатой пайки и др.
Источниками энергии при высокотемпературной пайке являются излучение и электроконтактный нагрев (электросопротивлением), индукционный нагрев токами средней и высокой частоты. Среди способов высокотемпературной пайки по источнику нагрева наиболее широко используют индукционную пайку и пайку в вакуумных печах.
Комментарии закрыты.