Причины возникновения напряжений. и деформаций при сварке
Основными причинами возникновения собственных напряжений и деформаций в сварных соединениях и конструкциях являются неравномерное нагревание металла при сварке, литейная усадка, структурные и фазовые превращения в затвердевающем металле при охлаждении.
Неравномерное нагревание металла. Все металлы при нагревании расширяются, а при охлаждении сжимаются. Процессы сварки плавлением характеризуются местным нагревом металла с образованием неравномерного температурного поля в сварном соединении. При наличии непрерывной связи между нагретыми и холодными участками металла свариваемой детали в нем возникают сжимающие и растягивающие внутренние напряжения. Механизм образования их рассмотрим на примерах. Представим себе металлический стержень, свободно лежащий на сварочном столе.
При местном нагреве в центральной части его длина L увеличится на AL (рис. 7.2, а).
Это будет зависеть от коэффициента линейного расширения данного металла, длины нагретой зоны и температуры ее нагрева. В процессе охлаждения удлинение будет уменьшаться и при достижении начальной температуры станет равным нулю. После полного охлаждения стержень восстанавливает первоначальные размеры и в нем не будет ни внутренних напряжений, ни остаточных деформаций.
При местном нагреве того же стержня, жестко закрепленного с обоих концов (рис. 72, б), возможность свободного удлинения его исключается. Поэтому в нем возникают сжимающие внутренние напряжения, при определенных значениях которых произойдет пластическая деформация сжатия и на длине Z1 (нагретой зоны) он станет толще. При этом напряжения частично исчезнут. При последующем охлаждении стержень должен бы укоротиться, но этому препятствует жесткое закрепление его, в результате чего в нем возникают растягивающие напряжения.
Аналогичным образом возникают внутренние напряжения и деформации при наплавке валика на кромку металлической пластины (рис. 7.3, а). Наплавленный валик и нагретая часть пластины будут расширяться и растягивать холодную часть, вызывая в ней деформацию растяжения с изгибом. Сам же валик и нагретая
65
Р и с. 7.3. Напряжения и деформации при наплавке валика на кромку' полосы
часть пластины будут сжаты, поскольку их тепловому расширению препятствует се холодная часть. Характер распределения напряжений показан на рис. 7.3, б. Растягивающие напряжения принято обозначать знаком «+», а сжимающие —знаком *—». В результате такого распределения напряжений пластина прогнется выпуклостью вверх. В процессе остывания наплавленный валик и нагретая часть полосы, претерпев пластическую деформацию, будут укорачиваться. Этому укорочению вновь будут препятствовать слои холодной части металла пластины. Теперь уже наплавленный металл и нагревшаяся часть пластины будут стягивать участки холодного металла. Они сожмутся, и пластина прогнется выпуклостью вниз (рис. 7.3, <?), а остаточные напряжения в ней распределятся, как показано на рис. 7.3, г, В реальных условиях изменение температуры от нагретой к холодной зоне пластины происходит постепенно, поэтому таким же образом происходит и распределение напряжений.
Литейная усадка наплавленного металла. При охлаждении и затвердевании жидкого металла сварочной ванны происходит его усадка. Явление усадки объясняется тем, что при затвердевании увеличивается плотность металла, в результате чего объем его уменьшается. Поскольку металл шва нерызрывно связан с основным металлом, остающимся в неизменном объеме и противодействующим этой усадке, в сварном соединении возникают внутренние напряжения При сварке происходит продольная и поперечная усадка расплавленного металла, в результате чего в шве образуются продольные и поперечные внутренние напряжения, вызывающие деформации сварных соединений. За счет продольной усадки
возникает деформация изделий в продольном направлении относительно оси шва, а поперечная, как правило, вызывает угловые деформации в сварном соединении.
Напряжения от структурных превращений в металле. Наряду с термическими напряжениями при сварке могут возникнуть напряжения, обусловленные превращениями и изменениями структуры основного металла, нагревшегося выше критических температур. При сварке изделий из углеродистых и высоколегированных сталей особенно легко могут возникнуть напряжения при образовании мартенсита, обладающего наибольшим удельным объемом. При сварке низкоуглеродистой стали в интервале критических температур Д, и Л), в связи с тем что коэффициент линейного расширения для у-железа составляет 1,2 ■ 10-5, а для а-железа — 2 • 10—5, наблюдается уменьшение объема при нагревании от Д., до Д3. При охлаждении распад аустенита происходит в интервале Д2 — Ді, когда сталь пластична и изменение объема происходит без образования напряжений. Иная картина наблюдается у легированных сталей, склонных к закалке. Распад аустенина в них происходит при более низких температурах (200—300сС), когда металл обладает высокой прочностью и меньшей пластичностью. Такое превращение сопровождается возникновением структурных напряжений. Растягивающие напряжения от структурных превращений вызывают дополнительное увеличение деформаций, которые в межпластичных сплавах могут привести к образованию трещин. Поэтому сварочные напряжения в закаливающихся сталях более опасны. Для сварки таких материалов необходимо разрабатывать более сложный технологический пронесе.