ОСНОВЫ ТЕХНОЛОГИИ СВАРКИ МЕДИ И ЕЕ СПЛАВОВ

Уже отмеченная выше высокая теплопроводность меди (почти в 6 раз больше, чем у стали) требует применения источников с большой тепловой мощностью и повышенную погонную энергию. Высокие ско­рости охлаждения металла шва и околошовной зоны приводят к быст­рой кристаллизации, что затрудняет полноту протекания металлурги­ческих реакций и ухудшает формирование шва. Улучшить положение может предварительный и сопутствующий подогрев, рекомендуемый при сварке толщин более 10,0 мм.

Серьезной трудностью является высокая склонность металла шва к образованию горячих трещин. Она связана с большой величиной усад­ки при кристаллизации и высоким значением коэффициента теплово­го расширения, а также наличием легкоплавких эвтектик. Эвтектики эти образуются примесями, присутствующими в меди (кислород, сви­нец, висмут, сурьма, сера). Например, свинец образует окислы (РЬО - РЬ02-РЬ03) и дает эвтектики с температурой плавления 326 °С. Отсю­да, для улучшения свариваемости существует стремление к уменьшению содержания этих примесей в меди. Так, для ответственных сварных кон­струкций массовая доля вредных примесей в меди составляет: 02 - до 0,01; Bi - до 0,002; РЬ - 0,005. В некоторых особых случаях для свар­ных конструкций рекомендуется уменьшение в металле массовой доли кислорода до 0,003.

Кислород ведет также к образованию закиси меди Си20, которая при взаимодействии с водородом восстанавливается до меди с образовани­ем паров воды. Эти пары, накапливаясь в микродефектах металла, со­здают в нем давление, которое приводит к образованию микротрещин, в интервале хрупкости меди при температурах 300...350 °С. Это явле­ние называют «водородной болезнью» меди.

Атомарный водород хорошо растворяется в жидкой меди, причем растворимость растет с увеличением температуры (рис. 9.1). Скачок растворимости при переходе является предпосылкой к образованию газовой пористости в металле шва, так как при высоких скоростях кри­сталлизации, присущих меди, времени для полного удаления газов, ра­створенных в жидком металле, оказывается недостаточно. Здесь опре­деленную помощь может оказать подогрев, увеличивающий время нахождения сварочной ванны в жидком состоянии. Что касается азота, то он в меди не растворяется совершенно и не образует с ней химичес­ких соединений, являясь по отношению к ней инертным, и может при­меняться при сварке меди в качестве защитного газа. Азот в ряде случа­ев является газом даже более предпочтительным, так как позволяет

иметь «горячую» дугу из-за ее большей, чем при других газах, длины (рис. 9.2) дуги и связанную с этим большую тепловую мощность.

Г, °С

Для сварки меди применимы практически все способы электроду - говой сварки плавлением. Электродуговая сварка покрытыми электро­дами выполняется на постоянном токе обратной полярности. При сварке толщин 2,0...5,0 мм без разделки кромок применяют электроды диамет­ром 3,0...5,0 мм, силу тока (в зависимости от диаметра электрода) вы­бирают в диапазоне 120...300 А. Начиная с 5,0 мм, делается односторон­няя V-образная разделка со скосом 60...700 (до 10,0 мм). Для толщин выше 10,0 мм рекомендуется Х-образная разделка.

При многопроходной сварке применяют электроды диаметром

6,0. ..8,0 мм при сварочном токе до 500 А. При сварке толщин более

10,0 мм рекомендуется предварительный подогрев до 200...300 °С, при толщинах выше 20,0 мм - до 750...800 °С. При сварке стыковых соеди­нений используют стальные, медные или асбестовые подкладки.

Электроды для сварки меди могут иметь как медный стержень, так и бронзовый (наиболее распространена бронза БрКМцЗ-1) и специаль­ное покрытие, из которого металл шва может подлегироваться кремни­ем, марганцем и железом. Наиболее распространенные марки электро­дов «Комсомолец-100» ЗТ и АНЦ-1. При сварке первыми сварное соединение имеет прочность 180...200 МПа, а угол загиба 150...180°.

Сварка латуней затруднена тем, что цинк, входящий вторым элемен­том в двухкомпонентную латунь, обладает низкой температурой кипе­ния (907 °С), близкой к температуре плавления самого сплава (900... 1000 °С). Пары и окись цинка имеют высокую токсичность, обра­зуемая пылевидная смесь окиси цинка затрудняет видимость в районе сварки; испарение цинка приводит к образованию пор в металле шва.

Известен ряд марок электродов для сварки латуни (в основном они используются для заварки дефектов). Так, для заварки дефектов в греб­ных винтах рекомендуются электроды марок АСЗ-6 и ЭМЗ-2. При боль­шой массе отливок требуется предварительный подогрев до 250...300 °С.

Технология сварки безоловянистых бронз стремится выбрать такой термический режим, который давал бы узкую зону нагрева. Это связа­но с провалом прочности в районе 400 °С у этих сплавов, что при рез­ком изменении температур чревато образованием трещин в ЗТВ и ме­талле шва. Для разрядки напряжений при многослойной сварке рекомендуется проковка каждого прохода, кроме первого, при темпе­ратуре не выше 200 °С.

Алюминистые бронзы из-за повышенной теплопроводности требу­ют обязательного подогрева при толщине свариваемых элементов бо­лее 16,0 мм.

Известны электроды марки АБ-2, применяемые для сварки трубопро­водов и литья из бронз Бр. АЖ9-4, Бр. АЖМц-10-3-1,5 и др. Что касается сварки оловянистых бронз, то их свариваемость зависит от содержания олова и ухудшается с его увеличением в сплаве (появляется опасность об­разования трещин в ЗТВ). При ручной сварке могут применяться элект­роды марок Бр.1/ЛИИВТ, Бр. З/ЛИИВТ, предназначенные для сварки облицовочных втулок гребных судовых валов из бронзы Бр.010Ц2 и за­варки дефектов литья из бронзы Бр. ОЦ4-3.

При автоматической сварке под флюсом могут использоваться спе­циальные керамические флюсы типа ЖМ-1. Для меди средних толщин (4,0... 10,0 мм) удовлетворительные результаты получаются при исполь­зовании стандартных плавленых флюсов ОСЦ-45, АН-348А, АН-20С. Для больших толщин рекомендуется использование специальных флюсов (АНМ-13). В качестве электродной проволоки применяется бес­кислородная медь марки МБ или техническая медь марки Ml (массо­вая доля кислорода лишь 0,01).

В зависимости от технических требований (увеличение прочности) в качестве электродной проволоки для сварки меди и бронзы можно применять проволоки марок Бр. КМцЗ-1; Бр. ХТ0,6-0,5; Бр. Х07 и др. Сварка ведется на постоянном токе обратной полярности. Кромки до толщины 25 мм не разделывают (режим выбирают для диаметра элект­рода 4,0...5,0 мм).

При сварке металла большой толщины обычно выбирают U-образ - ную разделку с достаточной величиной притупления (5,0...8,0 мм). Сварка может производиться как расщепленным электродом (два электрода, рас­положенных поперек шва), так и одним электродом (диаметром 6,0 мм). Коэффициент расплавления электродной проволоки составляет около 20 г/А-ч, скорость расплавления из-за малого электрического сопротив­ления не зависит от величины вылета. Для получения сварных соедине­ний высокого качества необходима тщательная зачистка от окисной плен­ки свариваемых кромок и электродной проволоки, флюс должен быть прокален непосредственно перед сваркой.

При сварке латуней используют бронзовые проволоки (Бр. КМцЗ-1 и др.) и флюсы (АН-20, ФЦ-10, МАТИ-53). Рекомендуется сварка на ко­роткой дуге во избежание выгорания цинка. Этот способ применим и для сварки бронз. Железистые и марганцевистые бронзы хорошо сваривают­ся под флюсом АН-20 проволокой Бр. АМц9-2. Ток постоянный, поляр­ность обратная.

Для сварки меди и ее сплавов широко применяется сварка в защит­ных газах плавящимся и неплавящимся электродом.

Область применения вольфрамовых электродов ограничивается тол­щинами 4,0...6,0 мм (в аргоне) и 6,0...8,0 мм (в азоте и гелии); для этих толщин предварительный подогрев не требуется. Применение плавя­щегося электрода расширяет диапазон свариваемых толщин (6,0...8,0 мм для аргона и 10,0... 12,0 мм для азота и гелия).

Техника сварки в различных по составу инертных средах различается необходимостью поддержания разных по длине дуг. При сварке в аргоне и гелии длина дуги невелика (около 3,0 мм), а при сварке в азоте она дости­гает 12,0 мм. Отсюда, дуги, горящие в различных газовых средах, имеют отличающиеся друг от друга статические характеристики (см. рис. 9.2). При выбранном сварочном токе напряжение на дуге, а значит ее мощность и тепловложение самые высокие в азоте (в 3-4 раза больше, чем в аргоне). В гелии эти же показатели в 2 раза выше, чем в аргоне.

Для сварки неплавящимся электродом в качестве присадки может применяться как чистая раскисленная медь, так и бронзы и медно-ни­келевые сплавы. При применении азота следует учитывать большую (чем при гелии и аргоне) склонность сварных швов к порообразованию, что связано с понижением жидкотекучести металла сварочной ванны. Область режимов при ручной сварке неплавящимся электродом хоро­шо иллюстрируется схемой (рис. 9.3).

Рис. 9.3. Ориентировочные режимы по току, температуре подогрева и форме разделок для ручной сварки меди вольфрамовым электродом:

I - область односторонней сварки;

II - області» двухсторонней сварки одновременно в вертикальном положении

Для сварки плавящимся электродом применяется постоянный ток обратной полярности. Этот процесс обеспечивает повышение про­изводительности в 2-3 раза (по сравнению с вольфрамовым элект­родом), однако получение качественных швов требует тщательного подбора режимов для каждого диаметра электродной проволоки во избежание нарушения стабильности процесса и образования газовой пористости.

Достаточно эффективно применение сварки неплавящимся и пла­вящимся электродом для изготовления конструкций из латуни и брон­зы. Для латуни при сварке плавящимся электродом наряду с бронзовы­ми проволоками часто используется проволока из сплава Бр. КМцЗ-1. Применение гелия при сварке бронз за счет более «горячей» дуги по­зволяет вести процесс без предварительного подогрева.

Считается перспективным применение плазменной сварки из-за воз­можности высоких тепловложений и сварки стыковых соединений боль­ших толщин без разделки кромок. Так, возможна односторонняя свар­ка толщин 50...60 мм. Используются плазмотроны прямого действия, плазмообразующий газ: смесь аргона с гелием (до 85% последнего). В качестве присадочной проволоки рекомендуется применение порош­ковой проволоки ПП. Бр. ХТ12-2, что позволяет хорошо раскислить и делегировать металл шва, уменьшив тем самым склонность его к обра­зованию горячих трещин. В ряде отраслей промышленности применя­ется электронно-лучевая и электрошлаковая сварка элементов конст­рукций большой толщины из меди и ее сплавов.

Комментарии закрыты.