Контактные напряжения и контактная прочность
Контактные напряжения образуются в месте соприкосновения двух тел в тех случаях, когда размеры площадки касания малы по сравнению с размерами тел (сжатие двух шаров, шара и плоскости, двух цилиндров и т. п.). Если контактные напряжения превышают величину допускаемого напряжения, то на поверхности деталей появляются вмятины, борозды, трещины или мелкие раковины. Подобные повреждения наблюдаются у зубчатых, червячных, фрикционных и цепных передач, а также в подшипниках качений.
Теория контактных напряжений является предметом курса «Теория упругости». Расчеты многих деталей машин, изучаемые в данном курсе, выполняют по контактным напряжениям. Поэтому ниже излагаются краткие сведения о контактных напряжениях и о разрушениях деталей, связанных с этими напряжениями[15].
При расчете контактных напряжений различают два характерных случая: первоначальный контакт в точке (два шара, шар и плоскость и т. п.); первоначальный контакт по линии (два цилиндра с параллельными осями, цилиндр и плоскость и т. п.).
На рис. 8.7 изображен пример сжатия двух цилиндров с параллельными осями. До приложения удельной нагрузки Q цилиндры соприкасались по линии. Под нагрузкой линейный контакт переходит в контакт по узкой площадке. При этом точки максимальных нормальных напряжений ан располагаются на продольной оси симметрии контактной площадки. Величину этих напряжений вычисляют по формуле
Ехе2 |
Для конструкционных металлов коэффициент Пуассона располагается в пределах /1=0,25...0,35. Без существенной погрешности принимают /i1 = /i2 = 0,3 и получают
^=0,418V?^np/Pnp. (8.2) Здесь
L/p^l/riil/r* (8'3)
Где Ещ> и Рпр — приведенные модуль упругости и радиус кривизны; Еи Еъ гх, г2 — модули упругости и радиусы цилиндров.
Формула (8.2) справедлива не только для круговых, но и для любых других цилиндров. Для последних Г и г2 — радиусы кривизны в точках контакта. При контакте цилиндра с плоскостью г2 = оо. Знак минус в формуле (8.3) относится к случаю внутреннего контакта (когда поверхность одного из цилиндров вогнутая).
При вращении цилиндров под нагрузкой отдельные точки их поверхностей периодически нагружаются и разгружаются, а контактные напряжения в этих точках изменяются по прерывистому отнулевому циклу (рис. 8.8, г). Каждая точка нагружается только в период прохождения зоны контакта и свободна от напряжений в остальное время оборота цилиндра. Переменные контактные напряжения вызывают усталость поверхностных слоев деталей. На поверхности образуются микротрещины с последующим выкрашиванием мелких частиц металла. Если детали работают в масле, то оно проникает в микротрещины (рис. 8.8, а). Попадая в зону контакта (рис. 8.8, б), трещина закрывается, а заполняющее ее масло подвергается высокому давлению. Это давление способствует развитию трещины до тех пор, пока не произойдет выкрашивание частицы металла (рис. 8.8, в). Выкрашивание не наблюдается, если контактные напряжения не превышают допускаемой величины.
А# Один В |
Б |
А |
Irii 1 |
Г |
Рис. 8.8 |
Экспериментально установлено, что при качении со скольжением, например сохГ>со2г2 (рис. 8.8, а), цилиндры 1 и 2 обладают различным сопротивлением усталости. Это объясняется следующим. Усталостные микротрещины при скольжении располагаются не ра - диально, а вытягиваются в направлении сил трения. При этом в зоне контакта масло выдавливается из трещин опережающего цилиндра 1 и запрессовывается в трещины отстающего цилиндра 2. Поэтому
Отстающий цилиндр обладает меньшим сопротивлением усталости. Ускорение развития трещин при работе в масле не означает, что без масла разрушение рабочих поверхностей замедлено. Во-первых, масло образует на поверхности защитные пленки, которые частично или полностью устраняют непосредственный металлический контакт и уменьшают трение. При контакте через масляную пленку контактные напряжения уменьшаются, срок службы до зарождения трещин увеличивается. Во-вторых, при работе без масла увеличивается интенсивность абразивного износа, который становится главным критерием работоспособности и существенно сокращает срок службы.
Кривые усталости материала по контактным напряжениям подобны кривым усталости по напряжениям изгиба, растяжения — сжатия и другим (см. курс «Сопротивление материалов» и рис. 8.39). Здесь, так же как и при других напряжениях, имеется точка перелома кривой усталости при числе циклов NHG и соответствующий предел выносливости AH]Im. По снЦщ определяют допускаемые напряжения при расчете на усталость по контактным напряжениям.