ГОРЕЛКИ. КОНСТРУКЦИИ ГОРЕЛОК
Горелка — это устройство, предназначенное для получения ‘пламени необходимых тепловой мощности, размеров и формы. Все существующие конструкции газопламенных горелок можно классифицировать следующим образом:
< ч
1) по способу подачи горючего газа в смесительную камеру — инжекторные и оезынжекторные;
2) по мощности пламени — микромощности (Ю—60 дм3/ч аце
тилена)., малой мощности (25—400 дм3/ч ацетилена); средней мощности (50—2800 дм3/ч ацетилена) и большой мощности (2800____________________________________________________________
7000 дм3/ч ацетилена);
3) по назначению — универсальные (сварка, резка, пайка, наплавка, подогрев); специализированные (только сварка или только подогрев, закалочные и пр.);
4) по числу рабочих пламен — однопламенные и многопламенные;
5) по способу применения — для ручных способов газопламенной обработки; для механизированных процессов.
Рис. 27. Инжекторная горелка: / — кислородный ниппель; 2 — ацетиленовый ниппель; 3 — рукоятка; 4 — кислородная трубка; 5 — вентиль для кислорода; 6 — корпус; 7 — вентиль для ацетилена; 8 — инжектор; 9 — накидная гайка; 10 — смесительная камера; // — наконечник; 12 — соединительный ниппель; 13 — мундштук |
Инжекторные горелки. Кислород через ниппель / инжекторной
горелки ^проходит под избыточным давлением 0,1_____ 0,4 МПа (] —
4 кгс/см2) и с большой скоростью выходит из центрального канала инжектора 8 (рис. 27). При этом струя кислорода создает разрежение в ацетиленовых каналах рукоятки 3, за счет которого ацетилен подсасывается (инжектируется) в смесительную камеру 10, откуда образовавшаяся горючая смесь направляется в мундшук 13 и на выходе сгорает. Инжекторные горелки нормально работают при избыточном давлении поступающего ацетилена 0,001 МПа (0,01 кгс/см2) и выше.
Повышение давления горючего газа перед горелкой облегчает работу инжектора и улучшает регулировку пламени, хотя при этих условиях приходится прикрывать вентиль горючего газа на горелке, что может привести к возникновению хлопков и обратных ударов пламени. Поэтому при использовании инжекторных горелок рекомендуется поддерживать перед ними давление ацетилена (при работе от баллона) в пределах 0,02—0,05 МПа (0,2—0,5 кгс/см2).
Инжекторные горелки рассчитывают таким образом, чтобы они обеспечивали некоторый запас ацетилена, т. е. при полном открыла ацетиленового вентиля горелки расход ацетилена увеличивался по сравнению с паспортным для. инжекторных горелок — не
менее чем на 15%; для инжекторных резаков —не менее чем на 10% максимального паспортного расхода ацетилена.
На рис. 28 показаны в качестве примера конструкции инжекторных горелок средней мощности ГС-3 и малой мощности ГС-2 для
Рис. 28. Внешний вид и разрез горелок: а — типа ГС-3; б — типа ГС-2; 1 — трубка наконечника; 2 — смесительная камера; 3 и 5 — уплотнительные кольца из маслотермостойкой резины; 4 — маховичок; б — шариковый клапан; 7 — пластмассовая рукоятка; 8 — ацетиленовый ниппель; 9 — корпус; 10 — инжектор; 11 — накидная гайка; 12 — мундштук |
сварки металлов. Горелки снабжают набором сменных наконечников, различающихся расходом газа и предназначаемых для сварки металлов разной толщины. Номер требуемого наконечника выбирают в соответствии с требуемой тепловой мощностью пламени, выраженной в дмз /ч ацетилена. К рукоятке горелки ГС-3 можно присое-
динять и другие наконечники, например многопламенные дня подогрева, для пайки, вставные резаки для резки металла.
Для сварки и наплавки металлов большой толщины, нагрева и других работ, требующих пламени большой мощности, используют инжекторные горелки ГС-4 с наконечниками № 8 и 9:
№ наконечника 8 9
Расход газов, дм3/ч:
ацетилена......................... 2800—4500 4500—7000
кислорода........................ 3100—5000 5000—8000
Толщина свариваемой
стали, мм................................. 30—50 50—100
В наконечниках ГС-4 инжектор и смесительная камера установлены непосредственно перед мундштуком. Горючий газ подается в инжектор по трубке, расположенной внутри трубки подачи кислорода. Этим предупреждается нагревание горючего газа и смеси
Рис. 29. Наконечник с подогревателем для сварки на пропан- бутане: 1 — мундштук; 2 — подогревающая камера; 3 — подогреватель; 4 — сопла подогревателя; 5 — трубка горючей смеси; 6 — подогревающие пламена |
отраженной теплотой пламени, что снижает вероятность обратных ударов пламени и хлопков при использовании пламени большой мощности. Горелка ГС-4 может работать на пропан-бутане, для чего снабжена двумя наконечниками с сетчатыми мундштуками, рассчи - на расходы: № 8—пропан-бутана 1,7—2,7, кислорода
о У, о м' /ч; №9 — пропан-бутана 2,7—4,2, кислорода о ч
14,7 м3/ч.
Мундштуки горелок малой мощности или имеющих водяное охлаждение изготовляют из латуни ЛС59-1. В горелках средней мощности мундштуки для лучшего отвода теплоты изготовляют из меди М3 и хромистой бронзы Бр. Х0,5, к которой не так пристают брызги расплавленного металла. Для получения пламени правильной формы остойчивого его горения выходной канал не должен иметь заусен - ’ вмятин и других дефектов, а внутренняя поверхность канала Должна быть чисто обработана. Снаружи мундштук рекомендуется полировать.
Горелки для газов-заменителей отличаются от ацетиленовых тем, Что снабжены устройством для дополнительного подогрева и
перемешивания газовой смеси до выхода ее из канала мундштука. Серийно выпускаемые горелки ГЗУ-2-62 и ГЗМ-2-62М для этого имеют подогреватель и подогревательную камеру, расположенные на наконечниках между трубкой подвода горючей смеси и мундштуком (рис. 29). Часть потока смеси (5—10%) выходит через дополнительные сопла подогревателя и сгорает, образуя факелы, подогревающие камеру из коррозионностойкой стали. Температура смеси на выходе из мундштука повышается на 300—350 с и соответственно возрастает скорость сгорания и температура основного сварочного пламени. Горелки могут работать на пропан-бутан - кислородной и метан-кислородной смеси; ими можно сваривать стали толщиной до 5 мм (в отдельных случаях до 12 мм) с удовлетворительными показателями по производительности и качеству сварки. Наконечники этих горелок рассчитаны на следующие расходы газов:
боты на ацетилене, следует брать наконечник, на два номера больший, и ввертывать в него мундштук, на один номер больший, а инжектор — на один номер меньший, чем при сварке металла той же толщины на ацетилено-кислородной смеси.
Специальные наконечники. Для сварки в тяжелых условиях нагрева, например крупных чугунных отливок с подогревом, применяют специальные теплоустойчивые наконечники НАТ-5-6 и НАТ-5-7. В этих наконечниках мундштук и трубка снабжены теплоизоляционной прослойкой из асбеста, разведенного на воде или жидком стекле, и покрыты сверху кожухом из стали Х25Т. Они могут длительно работать без хлопков и обратных ударов. Для этих работ используют также обычные наконечники, снабженные дополнительной трубкой для подвода охлаждающего воздуха.
Безынжекторные горелки. В отличие от инжекторных в данных горелках сохраняется постоянный состав смеси в течение всего времени работы горелки, независимо от ее нагрева отраженной теплотой пламени. В инжекторных же горелках нагрев мундштука и смесительной камеры ухудшает инжектирующее действие струи кислорода, вследствие чего поступление ацетилена уменьшается и смесь обогащается кислородом. Это приводит к хлопкам и обратным ударам пламени, — приходится прерывать сварку и охлаждать наконечник.
Безынжекторные горелки, в которых ацетилен и кислород поступают в смесительное устройство под равными давлениями, при
нагревании не меняют состава смеси, поскольку при нагревании мундштука если и уменьшается поступление газов в горелку, то оно одинаково как для кислорода, так и для ацетилена. Следовательно, относительное содержание их в смеси, т. е. состав смеси, остается постоянным. На рис. 30, а показана схема безынжектор - ной горелки, на рис. 30, б — схема устройства для питания безын - жекторной горелки ГАР (равного давления) кислородом и ацетиленом через постовой беспружинный регулятор ДКР (см. рис. 23). Горелка ГАР комплектуется семью наконечниками на расходы ацетилена 50—2800 дм3/ч. Каждый наконечник имеет смесительную камеру с двумя калиброванными отверстиями: центральным для кислорода и боковым для ацетилена.
1 — мундштук; 2 — трубка наконечника; 3 — вентиль кислорода; 4 — ниппель кислорода; 5 — ниппель ацетилена; 6 — вентиль ацетилена; 7 — редуктор кислородный; 8 — редуктор ацетиленовый; 9 — регулятор ДКР; К) шланги; 1J — горелка ГАР |
Камерно-вихревые горелки. Для некоторых процессов газопламенной обработки — нагрева, пайки, сварки пластмасс и т. п. не требуется высокой температуры ацетил єно-кислородного пламени. Для этих процессов можно использовать камерно-вихревые горелки, работающие на пропано-воздушной смеси. В этих горелках вместо мундштука имеется камера сгорания, в которую поступают пропан и воздух под давлением 0,05—0,2 МПа (0,5—2 кгс/см2). Пропан подается в камеру через центральный канал, а воздух, вызывающий также вихреобразование, поступает по многозаходной спирали, обеспечивающей «закрутку» газовой смеси в камере сгорания. Продукты сгорания выходят через концевое сопло камеры сгорания с большой скоростью, образуя пламя достаточно высокой температуры (1500—1600° С). Горелки позволяют получать пламя с температурой 350—1700° С.
Горелки специальные. К таким горелкам относятся, например, многопламенные для очистки металла от ржавчины и краски;
газовоздушные для пайки и нагрева, работающие на ацетилене и газах-заменителях; керосино-кислородные для распыленного жидкого горючего; многопламенные кольцевые для газопрессовой сварки; для поверхностной закалки; для пламенной наплавки; для сварки термопластов и многие другие.
Принципы устройства и конструкции их во многом аналогичны используемым для сварочных горелок. Отличие состоит в основном в тепловой мощности и размерах пламени или суммы пламен (при многопламенных горелках), а также размерах и форме мундштука.
Комментарии закрыты.