Геотермальные тепловые насосы
Что такое низкопотенциальная энергия Земли
Низкопотенциальная энергия Земли (НГР) — это тепло грунта, грунтовых вод и поверхностных водоемов, аккумулированная в поверхностных слоях земной коры.
Эта энергия может с успехом использоваться для обеспечения тепло - и хладоснабжения (кондиционирования), горячего водоснабжения зданий и сооружений всех типов, а также энергоснабжения технологических процессов (www. cleandex. ru).
Технология их освоения заключается в использовании систем извлечения энергии, ее обработки и доставки теплоносителя к потребителю. Главным компонентом подобных систем являются геотермальные тепловые насосы. Пример использования теплового насоса в доме приведен на рис. 6.6.
Рис. 6.6. Пример использования теплового насоса в доме |
0 |
Определение.
Геотермальные тепловые насосы (ГТН) — это устройства, осуществляющие обратный термодинамический цикл, благодаря чему низкопотенциальная энергия переносится на более высокий уровень.
Идея теплового насоса высказана полтора века назад британским физиком Уильямом Томсоном (более известный как лорд Кельвин). Это придуманное им устройство он назвал «умножителем тепла».
Помимо геотермального тепла, источником энергии для тепловых насосов может служить тепло сточных и оборотных вод, что позволяет параллельно решать проблему эксплуатации вторичных энергоносителей.
На сегодняшний день используются:
♦ парокомпрессионные геотермальные тепловые насосы (ПТН), работающие на хладонах;
♦ адбсорционные геотермальные тепловые насосы (АТН), в которых рабочими веществами выступают вода и водный раствор бромистого лития.
Н |
Примечание.
Однако, в связи с меньшей эффективностью и сложностью конструкции АТН не получили распространения.
Принцип роботы парокомпрессионного теплового насоса
Тепловой насос — это «холодильник наоборот», отмечается на www. avante. com. ua. В обоих устройствах основными элементами являются испаритель, компрессор, конденсатор и дроссель (регулятор потока), соединенные трубопроводом, в котором циркулирует поток хладагента.
Хладагенты — это вещества, способного кипеть при низкой температуре и меняющее свое агрегатное состояние с газового в одной части цикла, на жидкое — в другой. Просто в холодильнике главная партия отводится испарителю и отбору тепла, а в тепловом насосе — конденсатору и передаче тепла.
Функция бытового холодильника сводится к охлаждению продуктов, и его сердцем является теплоизолированная камера, откуда тепло «откачивается» (отбирается кипящим в теплообменнике-испарителе хладагентом) и через теплообменник-конденсатор «выбрасывается» в помещение (задняя стенка холодильника довольно теплая на ощупь).
В тепловом насосе главным становится теплообменник, с которого тепло «снимается» и используется для обогрева дома, а второстепенная «морозилка» размещается за пределами здания.
Схематично тепловой насос можно представить в виде системы из замкнутых контуров.
Внешний контур (коллектор) представляет собой уложенный в землю или в воду (например, полиэтиленовый) трубопровод, в котором циркулирует незамерзающая жидкость — антифриз. Источником низкопотенциального тепла может служить грунт, скальная порода, озеро, река, море и даже выход теплого воздуха из системы вентиляции какого-либо промышленного предприятия.
Во второй контур, где циркулирует хладагент, как и в бытовом холодильнике, встроены теплообменники — испаритель и конденсатор, а также устройства, которые меняют давление хладагента — распыляющий его в жидкой фазе дроссель (узкое калиброванное отверстие) и сжимающий его уже в газообразном состоянии компрессор.
Рабочий цикл выглядит так (рис. 6.7). Жидкость хладагента продавливается через дроссель, ее давление падает, и она поступает в испаритель, где вскипает, отбирая теплоту, поставляемую коллектором из окружающей среды. Далее газ, в который превратился хладагент, всасывается в компрессор, сжимается и, нагретый, выталкивается в конденсатор. Конденсатор является теплоотдающим узлом теплонасоса: здесь происходит процесс получение теплоты — теплота
Рис. 6.7. Схема работы теплового насоса
принимается водой в системе отопительного контура. При этом газ охлаждается и конденсируется, чтобы вновь подвергнуться разряжению в расширительном вентиле и вернуться в испаритель. После этого рабочий цикл начинается сначала.
Чтобы компрессор работал (поддерживал высокое давление и циркуляцию), его надо подключить к электричеству. Но на каждый затраченный киловатт-час электроэнергии тепловой насос вырабатывает 2,5—6 киловатт-часов тепловой энергии. Соотношение вырабатываемой тепловой энергии и потребляемой электрической называется коэффициентом трансформации (или коэффициентом преобразования теплоты) и служит показателем эффективности теплового насоса. Эта величина зависит от разности уровня температур в испарителе и конденсаторе: чем больше разность, тем меньше эта величина.
По этой причине тепловой насос должен использовать по возможности большее количество источника низкопотенциального тепла, не стремясь добиться его сильного охлаждения. В самом деле, при этом растет эффективность теплового насоса, поскольку при слабом охлаждении источника тепла не происходит значительного роста разницы температур.
По этой причине тепловые насосы делают так, чтобы масса низкотемпературного источника тепла была значительно большей, чем нагреваемая масса. В этом состоит одно из важнейших отличий теплового насоса от традиционных (топливных) источников тепла, в которых вырабатываемая энергия зависит исключительно от теплотворной способности топлива. По этой причине тепловой насос в каком-то смысле «привязан» к источнику низкопотенциального тепла, имеющего большую массу.
Эта проблема может быть решена введением в тепловой насос системы массопереноса, например, системы прокачки воды. Так устроена система центрального отопления Стокгольма.