АВТОМАТИЗАЦИЯ РАБОТЫ СТРОИТЕЛЬНЫХ МАШИН
10.4.1. ОБЩЕЕ СОСТОЯНИЕ АВТОМАТИЗАЦИИ
Постоянно растущее увеличение объемов строительных работ и ужесточающие требования по значительному улучшению их качества требуют ускоренного и широкого внедрения автоматизации в строительных машинах и технологических процессах. Для этого в НИИСтройдормаше разработан набор унифицированных приборов регулирования и управления различными машинами, входящих в ряд агрегатированных комплексов автоматической аппаратуры (АКА). Однако выпуск автоматизированной продукции по строительным и дорожным машинам и оборудованию очень неоднороден по номенклатуре, стоимости и объему производства. Значительную часть объема выпуска (53%) составляют автоматизированные мобильные строительные и дорожные машины. К ним относят самоходные стреловые краны, гидравлические экскаваторы, землеройно-транспортные и дорожные машины.
Практически одинаковый объем выпуска составляет продукция на базе автоматизированных тракторов и для промышленности строительных материалов. И всего по 4 % приходится на долю мелиоративных, торфяных и лесозаготовительных машин, строительно-отделочных машин и электроинструмента и другой продукции. Объем выпуска специализированных средств автоматизации для дорожно-строительных машин также неоднороден и в большинстве своем предназначен для защиты строительных кранов от перегрузки и для систем контроля, диагностики и управления. Рассмотрим основные разработки, внедренные в строительные и дорожные машины и оборудование.
Автоматическое управление перемещением, взвешиванием, перемешиванием, контролем за работой и порционной выдачей материалов в асфальтосмесительных и цементосмесительных установках всех типов и назначений осуществляется системой «АКА-Бетон».
Автоматизация контроля безопасности работы различных кранов и погрузчиков, ограничения их грузоподъемности, применения дистанционного и автоматического управления осуществляется системой «АКА-Кран».
Автоматизация саморегулирования рабочих органов, элементов управления и контроля аэродромных, мелиоративных и дорожно-строительных машин при возведении земляного полотна и устройстве дорожных покрытий в части обеспечения ровности взлетной полосы, траншеи, дороги и покрытий, требуемых поперечного и продольного уклонов, толщины и плотности укладываемого материала осуществляется системой «АКА-Дормаш».
В комплект аппаратуры «АКА-Дормаш» входят следующие устройства (рис. 10.26): /— «Стабилоплан» для скреперов, канавокопателей, дреноукладчиков и др.; II — «Автоплан» для бульдозеров; III — «Профиль» для автогрейдеров и профилировщиков; IV — «Стабилослой» для различных укладочных машин.
В комплекте аппаратуры используют следующие автономные системы управления:
• маятниковые датчики, установленные на борту машины, для контроля положения рабочего органа;
• копирные системы, обеспечивающие контроль положения по внешнему копиру — проволоке (тросу), бордюру, колесу, лыже, поверхности готового покрытия, радио - и световому лучу и т. п.;
• комбинированные системы, в которых контроль углового положения осуществляется автономными датчиками, а определение положения по высоте — копиром.
Все системы, используемые в машинах различного назначения (рис. 10.26), комплектуют в основном из двух разновидностей автономных маятниковых датчиков 1 (отличающихся между собой типом установочного приспособления и разрешающей способностью преобразователя), щуповым (копирным) датчиком 2, подъемным устройством 3, двумя разновидностями электрогидрозолотников 4 (при этом один вид золотника является составным элементом другого), унифицированным пультом дистанционного управления 5 и вспомогательным блоком 6. Вместо щупового или маятникового датчика может использоваться следящая система управления с дискретным регулированием. В этом случае дополнительно применяется унифицированное согласующее устройство 7, лазерный излучатель (световой луч вместо копира) 8 и фотоэлектрический приемник 9.
В датчиках углового положения (ДУП) первого поколения используется преобразователь контактного типа. В последующих конструкциях применяется датчик углового положения (ДКБ), в котором преобразование изменения угла отклонения в электрический сигнал осуществляется унифицированным бесконтактным преобразователем. Маятниковый датчик ДКБ (рис. 10.27, а) состоит из закрепленного на валу тонкостенного цилиндра со смещенным, относительно оси вращения, центром тяжести.
Экран, связанный с чувствительным элементом, при повороте корпуса датчика (изменении угла наклона рамы машин) изменяет
Рис. 10.27. Датчики контроля положения рабочего органа машииы
свое положение относительно катушек, закрепленных на корпусе, и изменяет выходной сигнал преобразующего блока.
При работе машины с внешним копирным устройством применяют датчики типа ДЩ (рис. 10.27, б), состоящие из бесконтактного датчика 2 и экрана 1, соединенного с щупом 3. Поворот щупа относительно тросика и соответственно экрана на угол, превышающий допустимое значение, вызывает подачу датчиком дискретного сигнала, осуществляющего управление рабочим органом. В датчике второго поколения ДЩБ используют унифицированный преобразователь аналогового типа с выходным сигналом, пропорциональным угловому перемещению щупа и необходимым для индикации отклонения и в качестве управляющего сигнала. При этом преобразователь перемещения в электрический сигнал является унифицированным и применяется в обоих типах датчиков последнего поколения.
Системы автоматического управления по положению рабочего органа машин разделяют на одно-, двух - и трехканальные. При одноканальных системах управления рабочий орган машины удерживается в заданном положении в одной плоскости: продольной у скреперов и бульдозеров, поперечной — у авто грейдеров. К таким системам относятся «Стабилоплан-1» и заменяющие их системы последующих поколений, «Стабилоплан-10» и «Копир-Стабилоплан» для скреперов, «Автоплан-1» и «Копир-Автоплан-10» — для бульдозеров, «Профиль-1» и «Профиль-10» — для легких и средних автогрейдеров. При двухканальных системах управления стабилизация положения рабочего органа обеспечивается одновременно в продольной и поперечной плоскостях. К этим системам относятся «Комбиплан» для бульдозеров, «Профиль-2» и «Профиль-20» — для
средних и тяжелых авто грейдеров, «Стабилослой-1» и «Стабилос - лой-10» — для укладчиков покрытий. Унифицированный ряд систем автоматического управления типа «Профиль», предназначенных для управления положением рабочих органов, представлен в табл. 10.2. При трехканальных системах управления, помимо фиксации положения рабочего органа в двух ортогональных вертикальных плоскостях, имеется еще и управление движением машины в плане («по курсу»). Эти системы управления «Профиломат-1», «Профиломат-2, 5, 6 и 7» устанавливаются на профилировщиках оснований и укладчиках покрытий, входящих в комплект машин типа ДС-110 для скоростного строительства автомобильных дорог и взлетно-посадочных полос аэродромов.
Таблица 10.2 Унифицированный ряд систем типа «Профиль»
|
Копирные системы автоматики, использующие внешний копир-проволоку (тросик), имеют ряд недостатков. К ним следует отнести повышенную трудоемкость очень точных работ подстановке тросика, появление погрешностей в работе копирно-щуповой системы в связи с провисанием тросика, колебания шупа, ошибок при установке тросика и постоянным работам по его поддержанию в заданном положении.
При использовании в качестве жесткой опорной базы уже готовых дорожного основания, дорожного покрытия, бордюрного камня или дорожной разметки воздействие на датчик может передаваться через промежуточный механизм, перемещающийся по указанным поверхностям. В качестве такого механизма-щупа используются колесо, лыжа с выравнивающими шарнирными или рычажными устройствами. Так, на машинах, осуществляющих холодное фрезерование дорожных покрытий (ремонтные работы по снятию верхнего изношенного слоя покрытия), для выдерживания продольного уклона глубину фрезерования на правой и левой сторонах рабочего органа (фрезы) устанавливают отдельно в зависимости от базовой плоскости, (рис. 10.28, а). Заданный уклон относительно базовой плоскости 1, на которую опирается шуп — лыжа 2, устанавливают с регистрацией на шкалах рукоятками 4. Подъем и опускание фрезы 8 производят двумя гидроцилиндрами 6, управляемыми через золотники 5 от датчиков с блоками сравнения 3 действительной и заданной величины.
В случае отсутствия на одной стороне рабочего органа базовой плоскости или необходимости выдерживания задаваемого поперечного профиля поверхности дорожного покрытия используют регулятор поперечного уклона 7 (рис. 10.28, б). Он представляет собой цифровой задатчик уклона и автоматически сохраняет заданный поперечный уклон независимо от установленной глубины фрезерования. Этот регулятор может устанавливаться как на одной, так и на другой стороне рабочего органа машины.
Рис. 10.28. Схема автоматического выдерживания продольного (а) и поперечного (б) уклонов рабочим органом машины для фрезерования дорожных покрытий |
В настоящее время наиболее прогрессивными и используемыми в качестве копиров являются лазерные системы управления. В них широко применены элементы микроэлектроники, интегральные схемы, микропроцессоры, логические запоминающие и вычислительные устройства. Такие системы используются как для управления одной строительной или дорожной машиной, так и группой машин на значительных площадях и расстояниях (до 1500 м) при достаточно высоких скоростях движения. Применение этих систем обеспечивает как раздельное, так и одновременное управление курсом машины и толщиной укладываемого слоя материала (бетон, асфальт) укладочными машинами, а также автоматическую ориентацию рабочих органов в пространстве. Опорной базой в этой системе служит секторная в горизонтальной плоскости или крестообразная форма излучения, образованная пересечением двух секторов.
о |
Рис. 10.29. Схемы лазерного сканирующего (в) координатора и растрового автокоординатора (о) |
Для управления рабочими органами строительных и дорожных машин широко используют лазерные координаторы различных конструкций и назначения. К достоинствам сканирующих координаторов (рис. 10.29, а) следует отнести возможность при одном излучателе быть двухкоординатными, а также простота их изготовления и эксплуатации. Они состоят из лазерного излучателя 1 с формирователем оптического луча 2, воздействующего на фотоприемник 4, установленный на рабочем органе 9 (отвал землеройно-транспортной машины). Полученный фотоприемником сигнал проходит через блок его усиления 5, электронный ключ 6, цифровое измерительное устройство 7 и подается на датчик положения рабочего органа 3, связанного с блоком рассогласования фотоприемника 8. Растровые автокоординаторы (рис 10.29, 6) используют для программного управления рабочими органами строительных и дорожных машин. От сканирующих излучателей они отличаются наличием растрового излучателя, фильтрами частот f(ll) и /г(/2), детекторами 13 и 14 и усилительно-множительным устройством 15. К перспективному, оборудованию для применения на строительных и дорожных машинах следует отнести и радиоанализаторные координаторы.
В настоящее время осуществляется серийное производство современных отечественных электронных устройств отображения информации для экскаваторов и погрузчиков, ограничителей нагрузки кранов типа ОНК для самоходных гидравлических кранов и унифицированный ряд систем «Профиль-30» для автогрейдеров, скреперов, бульдозеров и асфальтоукладчиков, включающий в себя и заменяющий все ранее разработанные системы для этих машин.
Наряду с НИИСтройдормашем большие работы по разработке и внедрению в строительных машинах различных систем регулирования, управления и контроля ведутся в различных учебных и научных институтах, проектных организациях и промышленных предприятиях.
Автоматизация строительных и дорожных машин ведется в основном по трем направлениям, обеспечивающим управление пространственным положением рабочих органов машин, оптимизацию наиболее энергоемких режимов работы машин и создание на основе лазерной техники комплексной автоматизированной системы управления технологическими процессами в строительстве.
Первое направление автоматизации содержит вопросы повышения планирующих свойств машин для получения заданных профиля и уклона поверхности, так как эти виды работ требуют значительных затрат времени и трудоемкости, а невыполнение требований существенно снижает качество работ, вызывает перерасход материалов и т. п. Это направление обеспечивается унифицированным рядом систем автоматики типа «Профиль» с микроэлектронными блоками управления, которые делятся на автономные, копирные и комбинированные.
Автономные системы обеспечивают контроль положения рабочих органов относительно вертикали с помощью рассмотренных выше бортовых датчиков, обычно маятникового типа. В копирных системах датчик, установленный на одной стороне машины, по ходу контролирует положение рабочего органа в соответствии с заданным профилем — по натянутому тросу, лучу лазера, точно построенной полосе дороги или бордюра. В комбинированных системах, к которым относится и «Профиль-30», требуемый уклон рабочего органа в поперечной плоскости обеспечивается автономным датчиком, а его высотное положение — по копирному устройству. Рассмотрим принцип действия этой системы в общем случае (рис. 10.30).
Обычно рабочий орган землеройной, профилировочной или укладочной машины при их движении по неровной поверхности перемещается по высоте относительно заданного положения Нзгд. В этом случае щуповой датчик ДЩВ или фотоприемное устройство ФПУ лазерного излучения определяют отклонение одной из кромок рабочего органа относительно копирной поверхности. При этом выходной сигнал І2 поступает в первый микроэлектронный блок управления БУ1 и сравнивается с сигналом ц задатчика толщины срезаемой стружки ЗДТ. Разность сигналов (Д/1-2 = м - іі) проходит через первый усилитель мощности УМ1 и поступает на электромагниты ЭМ1 и ЭМ2 первого электрогидравлического распределителя ЭГР1, который направляет требуемый поток рабочей жидкости в одну из полостей гидроцилиндра ГЦ1. Перемещение поршня со штоком изменяет высоту Ни управляемой кромки рабочего органа до совпадения ее с требуемым положением H2dд.
При осуществленном изменении высоты первой кромки рабочего органа или наклоне машины в процессе ее движения по не-
Рис. 10.30. Функциональная схема системы «Профиль-30» |
ровностям рабочим органом совершаются угловые перемещения в поперечной плоскости относительно вертикали. В этом случае в работу включается второй автономный канал управления системы. Автономным маятниковым датчиком ДКБ измеряется величина угла поперечного наклона рабочего органа, которая преобразуется в электросигнал h и подается в блок управления БУ2. Здесь г'з сравнивается с сигналом U задатчика ЗДУ угла наклона, управляемого ма - шинистом-оператором. При возникшем рассогласовании разность этих сигналов подается в усилитель мощности УМ2, а из него на электромагниты ЭМЗ и ЭМ4 электрогидрораспределителя ЭГР2, направляющего поток рабочей жидкости в требуемую полость гидроцилиндра ГЦ2. Перемещение штока гидроцилиндра поднимает или опускает вторую кромку рабочего органа до углового положения у, равного заданному углу у3ад.
Второе направление автоматизации машин обеспечивает автоматизацию наиболее энергоемких технологических процессов, позволяющих максимально использовать тяговые возможности машин, снизить расход топлива, износ ходовой части, облегчить труд машиниста и т. п. Для оптимизации силового контура и регулирования рабочих процессов разработаны унифицированные системы типа «Режим». При этом изменение тягово-скоростных характеристик машин позволяет управлять нагрузкой при автоматическом заглублении и выглублении рабочего органа. Управляющим параметром может быть скорость машины, обороты двигателя или гидротрансформатора, угловое положение тяговой рамы или толкающего бруса, а также их сочетание в случае, например, буксования движителей. Стабилизация каждого из этих параметров осуществляется при заданных ограничениях на другие. В строительных машинах эта система может использоваться как автономно, так и совместно с системами типа «Профиль».
Принцип работы такой системы представлен на рис. 10.31. Для предотвращения остановки двигателя при перегрузке в процессе копания аппаратура обеспечивает стабилизацию частоты вращения вала двигателя пдв на заданном уровне п3. При этом сигнал датчика частоты вращения ДЧВ сравнивается с заданным значением частоты л3, после чего вырабатывается сигнал на подъем или опускание рабочего органа. Одновременно с этим измеряются и сравниваются со своими граничными значениями такие параметры, как угловое положение, скорость и буксование. При достижении граничных значений управление отключается и вырабатывается команда на выглубление рабочего органа.
В процессе транспортирования грунта обеспечивается поддержание действительной скорости машины на заданном уровне.
При планировочных работах система «Режим» работает совместно с системой «Профиль». В этом случае разность частот вращения вала (Лдв - /із) .усиливается по мощности и подается на блок управления «Профиль» вместе с выходным сигналом задатчика толщины срезаемой стружки. Это обеспечивает непрерывную регулировку толщины стружки и нагрузки, действующей на отвал, а также и частоты вращения вала двигателя.
Третье направление автоматизации машин является наиболее прогрессивным и нацелено на совершенствование технологии и организации строительных работ путем создания на базе лазерной и микропроцессорной техники комплексной системы дистанционного программного или автоматического управления машинами, а также приборов оперативного контроля качества укладываемых дорожно-строительных материалов. Эти системы управления предназначены в основном для машин, занятых на строительстве дорог, мелиоративных и других сооружений. Системы управления с помощью лазерной техники обеспечивают и контролируют требуемые высотные отметки, продольный и поперечный профиль разрабатываемых и укладываемых дорожно-строительных материалов для каждой машины, работающей в любой точке строительной площадки. Рассмотрим работу такой системы на примере комплекта аппаратуры «Дорога» (рис. 10.32).
Система управления состоит из задающей /, контрол ьно-следя - щей II и программно-управляющей III частей. Задающая часть с помощью лазерного излучателя устанавливает параллельно проектной поверхности дороги световую опорную плоскость. При этом оптический пучок в приборе подается на пентопризму, которая разво-
рачивает излучение на 90° и осуществляет его вращение вокруг вертикальной оси излучателя.
Контрольно-следящая часть включает в себя фотоприемное устройство (ФПУ), установленное на штанге механизма перемещения (МП), которая закреплена на рабочем органе машины, в данном случае на отвале. ФПУ служит для преобразования лазерного сигнала в электрический, поступающий в блок выработки команд управления (БВК), где формируются управляющие сигналы для исполнительных механизмов с одновременным отображением на информационном табло-индикаторе положения режущей кромки отвала относительно проектной поверхности.
Программно-управляющая часть состоит из измерителя перемещения машины, микропроцессорного вычислительного блока выработки команд управления высотным положением ФПУ, механизма перемещения ФПУ и устройства для магнитной записи данных. При работе в ручном режиме оператор по показаниям индикатора сам устанавливает требуемое положение рабочего органа. В автоматическом режиме управляющие сигналы с БВК подаются на исполнительный механизм, т. е. на систему типа «Профиль». ФПУ автоматически удерживается в плоскости лазерного излучения, а величина его перемещения несет информацию о неровностях возводимой дороги. Необходимый уклон возводимой поверхности на постоянных продольных участках поверхности может задаваться отклонением оси излучателя от вертикали.
При работе на переходных вертикальных кривых требуется более сложное управление машиной, которое обеспечивается программным устройством. В этом случае микропроцессор рассчитывает необходимое высотное положение рабочего органа и формирует сигнал для механизма перемещения. При изменении положения ФПУ во высоте в БВК вырабатывается сигнал управления, по которому рабочий орган поднимается или опускается на высоту перемещения ФПУ. Такая система обладает большими возможностями, т. к. световая опорная поверхность позволяет не только управлять работой машины или комплекта машин, но и осуществлять постоянный геодезический контроль высотных отметок в любой точке и на любом этапе строительства дороги. Рассмотрим используемые системы автоматического управления рабочими органами для различных строительных и дорожных машин и оборудования.