Оптимизация конструкции зубчатых передач

При изложении содержания настоящей главы мы отмечали вли­яние различных параметров на габариты (массу), нагрузочную спо­собность и долговечность передачи. В этом параграфе эти сведения обобщаются с позиций оптимизации конструкции.

"Контактные напряжения пропорциональны квадратным корням из нагрузки. *"Напряжения изгиба пропорциональны нагрузке.

Для зубчатых передач управляемыми параметрами являются:

1) тип передачи — цилиндрическая, коническая, прямозубая, ко - созубая, с круговым зубом;

2) распределение передаточного отношения по ступеням в мно­гоступенчатой передаче;

3) материал и термообработка;

4) коэффициент ширины колеса или ф^;

5) угол наклона зуба /?;

6) коэффициенты смещения (коррекции) Jci и х2

7) модуль т и число зубьев z.

В качестве обобщенного критерия оптимизации можно принять цену изделия при сохранении его надежности и долговечности. В применении к зубчатым передачам используем сведения по сто­имости зубчатых редукторов общего назначения [31]. На основании статистической обработки цен на такие редукторы получена следу­ющая приближенная зависимость*:

U=Kam°-*25L№-M*N+L

Где Ц — цена редуктора, руб.; Кц — коэффициент, учитывающий тип редуктора и вид термообработки (см. табл. 8.10); т — масса редуктора, кг; N — серийность, шт/год.

Таблица 8.10


Тип редуктора

Одноступенчатые: цилиндрический конический червячный

Двухступенчатый цилиндрический соосный Цилиндрический по развернутой схеме Коническо-цилиндрический двухступенча­тый

Цилиндрический трехступенчатый Червячный двухступенчатый

Кп при термообработке

Улучшение

Закалка

Цементация

#!<35HRC

ТВЧ

Н{> 50HRC

#!<50HRC

3,15

3,3

3,8

5,9

6,2

7,2

3,5

3,75

5,15

3,9

4,3

4,9

3,75

3,9

4,5

4,15

4,4

4,51

4,3

4,45

5,1

3,7

3,85

5,25

Примечание. Высокую твердость можно получить и другими видами термообработки, например азотированием или нитроцементацией (см. табл. 8.8). При этом достигается примерно тот хе эффект.

Анализ формулы и табл. 8.10 позволяет отметить следующее. Цена редуктора зависит в основном от его массы. Влияние коэф­фициента Кп проявляется преимущественно через тип редуктора.

♦Формула д-ра техн. наук, проф. Г. А. Снесарева.

С увеличением серийности N цена уменьшается по пологой кривой параболического типа и приближается к некоторой постоянной величине:

100

100000

N

1000 10000


1,585

1,778

1,679

1,739

0,3/(LgN+L)

N


Имея в виду эти сведения, возвратимся к управляемым парамет­рам. Дешевле других цилиндрические передачи (табл. 8.10). Кони­ческие передачи дорогие. Их следует применять только при пересе­кающихся осях валов (см. объяснение на с. 157). Червячные пере­дачи из-за сравнительно низкого КПД целесообразно применять только при больших передаточных отношениях и перекрещиваю­щихся осях валов.

Выгодны не прямозубые, а косозубые колеса, так как они позво­ляют уменьшить габариты и массу [см. формулы (8.28), (8.29) и объяснения к ним].

Правильное распределение передаточного отношения по ступе­ням редуктора также снижает габариты и массу (см. рис. 8.37 и объяснения к нему).

Уменьшать габариты и массу можно и за счет термообработки до высокой твердости. Этот параметр многофакторный и требует дополнительных пояснений. Снижение габаритов легко просмат­ривается по формуле (8.13), где межосевое расстояние Aw зависит от [<тя], а последнее существенно возрастает с повышением твердости (см. табл. 8.8). Но одновременно Aw зависит от 1/Ьа, который умень­шается с повышением твердости (см. табл. 8.4). Кроме того, с по­вышением твердости возрастает Кц (см. табл. 8.10). И все же габа­риты (масса) и цена понижаются с повышением твердости. В круп­носерийном производстве выгодно применять колеса с высокой твердостью зубьев.

При высокой твердости зубьев встречаются случаи, когда глав­ным критерием работоспособности становится прочность не по контактным, а по изгибным напряжениям, тогда изгибную проч­ность можно повысить за счет положительного смещения х и уве­личения модуля т при одновременном уменьшении числа зубьев z [см. формулу (8.19) и рис. 8.20].

Масса редуктора. Как ее определить? К сожалению, мы не имеем хотя бы приближенной зависимости для определения массы редук­торов на стадии проектного расчета. В работе [31] масса редуктора определяется как сумма масс: корпуса, зубчатых колес, валов и под­шипников.

При оптимизации конструкции рассматривают несколько вари­антов сочетания величин управляемых параметров и для каждого из них определяют цену. Затем строят графики зависимости цены от
материала и твердости зубьев, от коэффициента ширины колес фЬа, от распределения передаточного отношения по ступеням редук­тора. По графикам, ориентируясь на цену, выбирают оптималь­ный вариант. Выполнение этого трудоемкого процесса стало прак­тически возможным с помощью ЭВМ. Программы расчета даны В [31].

Комментарии закрыты.