Классификация резиновых отходов и способов их Переработки

Особенности химического строения эластомеров, заклю­чающиеся в наличии длинных молекул с радикалами, которые образуют прочную трехмерную структуру с поперечными связями, а также сложность надмолекулярных структур эластомеров придаю! им уникальные свойства, делающие их незаменимыми материалами для современного машиностроения и других отраслей экономики.

В то же время именно эти свойства, в ряде случаев усугубляю­щиеся сложной конструкцией изделия (например, шин), являются основой значительных трудностей, связанных с утилизацией отработанных резиноподобных материалов.

Изделия из резины, благодаря уникальным свойствам этого материала (прежде всего способности к большим обратимым деформациям), применяются во всех отраслях промышленности. Их изготавливают путем вулканизации резиновых смесей, основой которых является каучук. Состав резиновых отходов может быть очень различным и зависит от ассортимента продукции, который включает резинотехнические изделия, обувь и шины. В зави­симости от назначения резиновые изделия изготавливаются на основе различных каучуков, пластификаторов, наполнителей и других ингредиентов, а потому их смешение между собой не всегда целесообразно. Отходы резины образуются как в сфере произ­водства резиновых изделий, так и в сфере их потребления, т. е. при эксплуатации.

Резинотехнические изделия могут содержать в своем составе в качестве арматуры текстильные материалы и металл. Про­мышленные отходы образуются на всех стадиях изготовления резиновых изделий. С точки зрения утилизации отходов прин­ципиально важно, образовались ли они до вулканизации или после нее. Все резиносодержащие отходы можно классифицировать так, как изображено на рис. 9.14.

Классификация резиновых отходов и способов их Переработки

Рис. 9.14. Классификация резиносодержащих отходов

Резиновые отходы, образовавшиеся до стадии вулканизации, по свойствам мало отличаются от исходных резиновых смесей и могут возвращаться в производство без значительной обработки. Эти отходы являются ценным сырьем и перерабатываются не­посредственно на тех предприятиях, где образуются. Они могут быть использованы в производстве шлангов для полива, резиновых ковриков, кровельных материалов, рукавиц, поддонов для пола салонов легковых автомобилей и других неответственных изделий технического назначения.

Из них также изготавливают резиновые плиты для животно­водческих ферм. Содержание различных видов невулканизованных резиновых отходов в смеси для получения таких плит достигает 95 %(по массе).

Невулканизованные и частично вулканизованные резиновые отходы используют для изготовления шифера и кровли (соот­ветственно волнистых и плоских листов).

Более сложно обстоит дело с переработкой вулканизованных резин, поскольку в отличие от других материалов они обладают высокой эластичностью, т. е. способностью к обратимым и высо­ким деформациям, что затрудняет их измельчение, являющееся первой стадией переработки практически любых твердых отходов. Несмотря на это, вулканизованные резиновые отходы также яв­ляются ценным вторичным сырьем, но требуют перед утилизацией тщательной обработки и подготовки.

Известные способы переработки вулканизованных резино­содержащих отходов можно разделить на химические, физико­химические и физические (рис. 9.15).

Классификация резиновых отходов и способов их Переработки

Рис. 9.15. Классификация способов утилизации отходов резин

Химические методы переработки приводят к необратимым химическим изменениям не только резины, но и веществ, ее составляющих (каучуков, мягчителей и т. д.). Эти методы осу­ществляются при высокой температуре, вследствие чего про­исходит деструктивное разрушение материала. К химическим методам относятся сжигание и пиролиз.

Несмотря на то, что химические методы переработки отходов резины позволяют получить ценные продукты и тепло, такая утилизация является недостаточно эффективной, поскольку она не позволяет сохранить исходные полимерные материалы.

Физико-химические методы переработки отходов, под кото­рыми имеется в виду регенерация, осуществляемая различными способами, позволяют сохранить структуру сырья, использо­ванного в процессе производства резины. При регенерации разрушается пространственная вулканизационная сетка за счет теплового, механического и химического воздействия на резину. Получаемый продукт — регенерат — обладает пластическими свойствами и используется при изготовлении резиновых смесей с целью замены каучука.

Физические методы переработки отходов представляют собой различные способы их измельчения с целью получения резиновой крошки (муки), наиболее полно сохраняющей свойства резины. Процесс измельчения резины достаточно сложен, поскольку, благодаря ее высоким эластическим свойствам, энергия, зат­рачиваемая на разрушение, расходуется в значительной степени на механические потери. Эффективность измельчения резины зависит от температуры и скорости приложения нагрузки. Если процесс измельчения происходит при температуре ниже тем­пературы стеклования полимера, то его деформации невелики и разрушение носит хрупкий характер.

Наиболее крупными по габаритам, многотоннажными и сложными по составу отходами резины являются шины. Поэтому в дальнейшем способы переработки резиносодержащих отходов мы рассмотрим на примере изношенных шин.

Производство шиндлй авто-, мототехники, дорожных и стро­ительных машин, колесных тракторов постоянно растет, а следовательно, непрерывно увеличиваются и отходы их пот­ребления. При этом накопление изношенных шин происходит по всей территории нашей страны, включая отдаленные и плохо освоенные территории, где сбор и транспортировка шин к месту их утилизации являются дорогостоящими мероприятиями и практически неосуществимы. Несмотря на значительную рас­средоточенность регионов накопления, шины являются основным источником сырья для получения вторичных материальных ресурсов, образующихся при переработке резиносодержащих отходов.

В этой связи следует упомянуть об опыте Японии, добившейся утилизации 75 % всех изношенных автопокрышек, в том числе 30 % используется для производства регенерата, 38 % — для получения тепловой энергии, 1 % — для производства восстановленных шин, остальное количество — для укрепления берегов и в дорожном строительстве без предварительной обработки.

Оставить комментарий