Техника резки
Поверхность разрезаемого металла должна быть хорошо очищена от грязи, краски, окалины и ржавчины. Для удаления окалины, краски и масла достаточно медленно провести пламенем горелки или резака по поверхности металла вдоль намеченной линии разреза. При этом краска и масло выгорают, а окалина отстает от металла. Затем поверхность металла зачищают металлической щеткой.
Процесс резки начинают с нагревания металла. Подогревающее пламя резака направляют на край разрезаемого металла и нагревают до температуры воспламенения его в кислороде, практически составляющей температуру плавления. Затем пускают струю режущего кислорода и перемещают резак вдоль линии разреза. Кислород сжигает верхние нагретые слои металла. Теплота, выделяющаяся при сгорании, нагревает нижележащие слои металла до температуры воспламенения и поддерживает непрерывность процесса резки.
При резке листового материала толщиной до 30 мм мундштук резака устанавливают вначале под углом 5° к поверхности, а затем — под углом 20—30° в сторону, обратную движению резака. Это ускоряет процесс разогрева металла и повышает производительность процесса резки.
Резку металла большой толщины выполняют следующим образом. Мундштук резака вначале устанавливают перпендикулярно поверхности разрезаемого металла, так чтобы струя подогревающего пламени, а затем и режущего кислорода располагалась вдоль вертикальной грани разре
заемого металла. После прогрева металла до температуры воспламенения пускают струю режущего кислорода. Перемещение резака вдоль линии резания начинают после того, как в начале этой линии металл будет прорезан на всю его толщину. Чтобы не допустить отставания резки в нижних слоях металла, в конце процесса следует постепенно замедлить скорость перемещения резака и. увеличивать наклон мундштука резака до 10—15° в сторону, обратную его движению. Рекомендуется начинать процесс резки с нижней кромки. Предварительный подогрев до 300—400°С позволяет производить резку с повышенной скоростью. Скорость перемещения резака должна соответствовать скорости горения металла. Если скорость перемещения резака установлена правильно, то поток искр и шлака вылетает из разреза прямо вниз, а кромки получаются чистыми, без натеков и подплавлений. При большой скорости перемещения резака поток искр отстает от него, металл в нижней кромке не успевает сгореть и сквозное прорезание прекращается. При малой скорости сноп искр опережает резак, кромки разреза оплавляются и покрываются натеками.
Давление режущего кислорода устанавливают в зависимости от толщины разрезаемого металла и чистоты кислорода. Чем выше чистота кислорода, тем меньше его давление и расход.
Ширина и чистота разреза зависят от способа резки и толщины разрезаемого металла. Машинная резка дает более чистые кромки и меньшую ширину разреза, чем ручная резка. Чем больше толщина металла, тем больше ширина разреза.
Процесс резки вызывает изменение структуры, химического состава и механических свойств металла. При резке низкоуглеродистой стали тепловое влияние процесса на ее структуру незначительно. Наряду с участками перлита
появляется неравновесная составляющая сорбита, что даже несколько улучшает механические качества металла. При резке стали, имеющей повышенное содержание углерода и легирующие примеси, кроме сорбита образуются троостит и даже мартенсит. При этом значительно повышаются твердость и хрупкость стали и ухудшается обрабатываемость кромок разреза. Возможно образование холодных трещин. Изменение химического состава стали проявляется в образовании обезуглероженного слоя металла непосредственно на поверхности резания. Это происходит в результате выгорания углерода под воздействием струи режущего кислорода. Несколько глубже находится участок с большим содержанием углерода, чем у исходного металла. Затем по мере удаления от разреза содержание углерода уменьшается до исходного. Также происходит выгорание легирующих элементов стали.
Механические свойства низкоуглеродистой стали при резке почти не изменяются. Стали с повышенным содержанием углерода, марганца, хрома и молибдена закаливаются, становятся более твердыми и дают трещины в зоне резания. Резка таких сталей выполняется с использованием предварительного подогрева. Температура подогрева приводится в табл. 23.
Нержавеющие хромистые и хромоникелевые стали, чугун, цветные металлы и их сплавы не поддаются обычной кислородной резке, так как не удовлетворяют указанным выше условиям. Для этих металлов применяют кислородно-флюсовую резку, сущность которой заключается в следующем. В зону резания с помощью специальной аппаратуры непрерывно подается порошкообразный флюс, при сгорании которого выделяется дополнительная теплота и повышается температура места разреза. Кроме того, продукты сгорания флюса реагируют с тугоплавкими окси -
дами и дают жидкотекущие шлаки, легко вытекающие из места разреза.
В качестве флюса используется мелкогранулированный железный порошок марки ПЖ-5М. При резке хромистых и хромоникелевых сталей во флюс добавляют 25—50% окалины; при резке чугуна — около 35% доменного феррофосфора; при резке меди и ее сплавов применяют флюс, состоящий из смеси железного порошка с алюминиевым порошком (15—20%) и феррофосфором (10—15%).
Резку производят установкой типа УРХС-5, состоящей из флюсопитателя и резака. Установка используется для ручной и машинной кислороднофлюсовой резки высоколегированных хромистых и хромоникелевых марок сталей толщиной до 200 мм при скорости резания 230—760 мм/мин. На 1 м разреза расходуется кислорода 0,20—2,75 м3, ацетилена — 0,017—0,130 м3 и флюса — 0,20—1,3 кг.
При кислородно-флюсовой резке некоторая часть теплоты подогревающего пламени уходит на нагревание флюса. Поэтому мощность пламени берется на 15—25% выше, чем при обычной резке. Пламя должно быть нормальным или с некоторым избытком ацетилена. Расстояние от торца мундштука резака до поверхности разрезаемого металла устанавливается в пределах 15—20 мм. При малом расстоянии частицы флюса отражаются от поверхности металла и, попадая в сопло резака, вызывают хлопки и обратные удары. Кроме того, наблюдается перегрев мундштука, приводящий к нарушению процесса резки. Угол наклона мундштука резака должен быть в пределах 0—10° в сторону, обратную направлению резки. Хорошие результаты дает предварительный подогрев. Хромистые и хромоникелевые стали требуют подогрева до 300—400°С, а сплавы меди — до 200—350°С.
Скорость резки зависит от свойств металла и от его толщины. Чугун толщиной 50 мм режут со скоростью 70— 100 мм/мин. При этом на 1 м разреза расходуется 2—4 м3 кислорода, 0,16—0,25 м3 ацетилена и 3,5—6 кг флюса. Примерно такие же данные получают при резке сплавов меди. При резке хромистых и хромоникелевых сталей расход всех материалов снижается почти в 3 раза.
Резку кислородным копьем выполняют тонкостенной стальной трубкой с наружным диаметром 20—35 мм. Трубку присоединяют к рукоятке с вентилем для кислорода и по ней подают кислород к месту разреза. До начала резки конец трубки нагревают газовой горелкой или электрической дугой до температуры воспламенения. Кислородное копье горящим концом с усилием прижимают к изделию (металл, бетон, железобетон) и прожигают отверстие. Образуемые шлаки давлением кислорода выносятся наружу в зазор между копьем и стенкой прожигаемого отверстия (рис. 55).
Воздушно-фмса&аз. .струя г “hra-t. |
уЗ |
Кисмрод і |
н < |
Рис. 55. Схема прожигания отверстия в бетоне кислородным копьем: 1 — держатель копья; 2 — копье; 3 —защитный экран; 4 — бетон |