ТЕПЛОВЫЕ СПОСОБЫ РЕЗКИ
Огневая резка металлов может быть разделена на две группы способов. К первой группе относятся способы, в которых преобладает тепловое воздействие на разрезаемый металл и основным процессом удаления металла из полости реза является выплавление. Для ускорения удаления металла могут применяться механические средства: давление струи газа, давление электрода; в последнем случае из полости реза может удаляться также металл, лишь размягчённый нагревом. Выплавление металла с целью резки может производиться различными источниками тепла, например газосварочной горелкой или дугой; на практике применяется преимущественно дуговой способ.
Ко второй группе огневой резки относятся способы, основанные на химической реакции сжигания металла. Для этой цели обычно применяется технически чистый кислород, сжигающий металл и переводящий его в окислы, которые и удаляются из полости реза. К этой группе относится наиболее важный в настоящее время способ кислородной резки.
Кислородная резка применяется преимущественно для сталей; резка других металлов встречает затруднения и требует значительного усложнения процесса.
Перспективной является фторная резка металлов, находящаяся пока ещё в стадии лабораторных исследований. Фтор является более универсальным средством резки металлов, чем кислород, так как энергично реагирует почти со всеми металлами и интенсивно их сжигает. Практическое применение фтора пока задерживается его высокой стоимостью и ядовитостью.
Для осуществления процесса кислородной резки металл нужно подогревать, что в большинстве случаев может быть осуществлено газовым пламенем или дуговым разрядом. Соответственно с этим различают газокислородную резку, когда подогрев производится газовым пламенем, и электрокислородную, когда подогрев производится дуговым разрядом. Режущим средством в обоих случаях является струя технически чистого кислорода. Наибольшее практическое применение в настоящее время имеет газокислородная резка.
Кислородную резку можно назвать химическим способом резки, а резку газовым или дуговым пламенем без применения кислорода — тепловым способом. Следует заметить, что граница между химическим и тепловым способами огневой резки металлов не является вполне чёткой. При тепловом способе обычно происходит частичное ■окисление и сжигание металла кислородом воздуха, и вытекающий
Фиг. 216. Способы огневой резки металлов. |
из полости реза металл всегда содержит значительное количество окислов. В то же время при химическом способе, например при газокислородной резке, несомненно имеет место и чисто тепловое воздействие на металл и его расплавление. Шлак, вытекающий из полости реза, наряду с окислами металла, всегда содержит и некоторое количество неокисленного металла. Классификация способов огневой резки металлов показана на фиг. 216.
Газоплавильная резка. Сварочная газовая горелка в крайнем случае может быть использована не только для сварки, но и для резки металла, путём выплавления его из полости реза. Этот способ может быть применён для резки легкоплавких металлов, например свинца; могут быть также разрезаны и более тугоплавкие металлы небольшой толщины, например стали. В этом случае для ускорения процесса резки пламя может быть отрегулировано на значительный избыток кислорода, который, с одной стороны, повышает температуру пламени, с другой, усиливает окисление и сжигание металла; таким образом, к тепловому действию пламени присоединяется и химическое воздействие избытка кислорода на металл. Способ применяется весьма редко, при отсутствии возможности произвести резку лучшими средствами.
Дуговая резка. Дугой можно производить не только сварку, но и резку металла, выплавляя его из полости реза и предоставляя возможность свободного вытекания. Резка может быть произведена как угольным, так и металлическим электродом. Резка угольным электродом на постоянном токе даёт лучшие результаты. Применяется нормальная или прямая полярность, т. е. на электрод даётся минус, а на основной металл плюс. Электроды лучше применять графитные, так как для заданной силы тока они дают возможность пользоваться электродами меньшего диаметра и, таким образом, снижать ширину реза; кроме того, графитные электроды медленнее обгорают при работе и расход их получается значительно меньшим по сравнению с расходом электродов из аморфного угля. Основное внимание при резке угольной дугой нужно обратить на возможность быстрого, свободного и удобного вытекания расплавленного металла из полости реза.
На фиг. 217 приведены некоторые примеры резки угольной дугой. Для резки угольной дугой желательны большие токи, обычно применяются токи от 400 до 1500 а. На толщинах. металла до 10—12 мм резка угольной дугой может дать достаточно высокую производительность, не уступающую производительности кислородной резки. С увеличением толщины металла производительность быстро падает, и на толщинах свыше 15 мм кислородная резка всегда производится быстрее. По качеству резки, чистоте кромок и ширине реза дуговой способ значительно уступает кислородному.
Резка может производиться и на переменном токе, но качество реза при этом получается хуже и производительность для той же силы тока — ниже. Резка угольной дугой может быть целесообразна, например, для чугуна и цветных металлов, так как эти металлы не поддаются обычной кислородной резке. Дуговая резка может быть иногда целесообразна и для стали, например при разборке старых конструкций из материала толщиной не свыше 20—30 мм, когда не требуется особой чистоты реза и стоимость процесса должна быть минимальной. Угольной дугой можно резать металл, сильно загрязнённый, покрытый ржавчиной, краской и т. п. без всякой подготовки, в то время как для кислородной резки требуется предварительная очистка поверхности металла вдоль линии
реза. К резке угольной дугой приходится прибегать также при отсутствии кислорода на месте работ или особой его дефицитности.
При резке металлическим стальным электродом для стержня электрода пригодна любая, даже непригодная для сварки, прово-
Фиг. 217. Резка угольной дугой. |
лока малоуглеродистой стали; загрязнения металла проволоки не имеют особого значения. Электроды для резки покрываются обмазкой для повышения устойчивости дуги, замедления плавления электрода, изоляции электродного стержня от основного металла при введении электрода в полость реза, а иногда и для ускорения резки за счёт окисления основного металла богатыми кислородом окислами, вводимыми в состав электродной обмазки, например перекисью марганца Мп02.
Выполнение процесса резки металлическим электродом показано на фиг. 218. В этом случае, как и при резке угольным электродом, основное внимание необходимо уделять удобству удаления расплавленного металла из полости реза. Резка металлическим электродом
даёт рез меньшей ширины и с более чистыми краями по сравнению с резкой угольным электродом.
Фиг. 218. Резка металлической дугой. |
К преимуществам резки металлическим электродом относится также возможность успешного выполнения работы на переменном токе с питанием дуги от нормальных сварочных трансформаторов, обладающих высоким к. п. д. и широко распространённых на производстве. Недостатком является довольно значительный расход электродов, быстро возрастающий с увеличением толщины разрезаемого металла. Резка металлической дугой обычно ведётся стальным электродом диаметром 5—6 мм при силе тока 300—400 а.
Резка металлическим электродом довольно широко применяется на производстве как вспомогательное средство при отсутствии кислорода на месте работ или при нежелании иметь специальное оборудование и специалиста газорезчика при общем незначительном объёме работ по резке.
Резка металлическим электродом производится от нормальных сварочных трансформаторов электросварщиком и может быть выполнена теми же электродами, которые применяются и для сварки. Таким образом, небольшие работы по резке электросварщик производит, не прибегая к специальному оборудованию или материалам. Металлическим электродом, например, прожигаются дыры для крепительных болтов при сборочных работах, перерезается фасонный материал, уголки, швеллеры, двутавры и т. п., вырезаются отверстия в листах и т. д. По производительности дуговая резка может конкурировать с кислородной резкой малых толщин металла (примерно до 10—15 мм). С дальнейшим увеличением толщины металла производительность дуговой резки быстро падает и начинает сильно отставать от производительности кислородной резки. Поэтому дуговая резка стали значительных толщин (свыше 15—20 мм), как правило, нецелесообразна. Существенным недостатком дуговой резки, по сравнению с газокислородной, является увеличенная ширина реза и меньшая чистота поверхности его кромок.
Дисковая резка. Известно, что быстро вращающийся диск, со значительной окружной скоростью на наружной грани обладает особыми режущими свойствами. Например, диск из плотной чертёжной бумаги перерезает карандаш без повреждения кромки бумажного диска. Диск из мягкой малоуглеродистой стали или меди свободно перерезает твёрдую высокоуглеродистую сталь. На этом явлении основано действие фрикционных пил, широко распространённых в нашей промышленности. Пила представляет собой быстро вращающийся тонкий диск обычно из малоуглеродистой стали. Диск легко перерезает фасонный материал, трубы, листы и т. п.
и даёт чистый рез с гладкими кромками, как бы отполированными трением диска. Давно возникла естественная мысль повысить производительность фрикционного диска созданием мощного электрического разряда между кромкой диска и разрезаемым металлом. Схема подобного устройства показана на фиг. 219.
3 мм, снабжённый зубчатой насечкой по |
Стальной диск, обычно диаметром около 1 м, толщиной около
Фиг. 219. Дисковая резка: |
/ — режущий диск; 2 — трансформатор; 3 — приводной электромотор; 4 — супорт; 5 — разрезаемый металл. |
окружности, вращается быстроходным электромотором с таким расчётом, чтобы получить скорость на окружности диска около 100—120 місек. На валу диска посажены контактные кольца; через эти кольца и неподвижные щётки диск присоединён к одному полюсу низковольтной обмотки трансформатора, дающего ток в несколько тысяч ампер. Другой конец обмотки трансформатора соединён с разрезаемым металлом.
При вращении между краем диска и основным металлом возникает мощный электрический разряд, промежуточный между
искровым и дуговым. Тепло, выделяемое разрядом, размягчает основной металл, в то же время металл диска мало нагревается разрядом ввиду того, что каждая точка окружности диска находится в зоне действия разряда очень короткое время, а остальное время данная точка диска проходит в окружающем холодном воздухе и успевает охладиться. Таким образом, разряд, размягчая основной металл, почти не действует на металл диска. В результате, основной металл размягчается и диск выбрасывает его из полости реза в виде искр и мелких брызг. Проведённые эксперименты показали возможность получить скорость резки, например, листовой стали толщиной 20 мм до 70—100 м/час. Дисковые машины, ввиду их громоздкости и необходимой значительной мощности, пока не получили заметного распространения в нашей промышленности.
Выдвигалась идея ускорения обработки металла резанием путём создания мощного электрического разряда между режущим инструментом и основным металлом, причём для режущего инструмента одной из подходящих форм является быстро вращающийся диск, аналогичный диску рассмотренной дисковой пилы. Этот способ обработки металлов находится ещё в стадии предварительных лабораторных опытов.
Комментарии закрыты.