Способы контроля сварных соединений
Сварные соединения считают качественными, если они не имеют недопустимых дефектов и их свойства удовлетворяют требованиям, предъявляемым к ним в соответствии с условиями эксплуатации сварного узла или конструкции.
Качество сварных соединений контролируют следующими видами контроля:
• предварительным, в процессе которого выполняют проверку качества исходных*материалов (свариваемого металла и сварочных материалов), контроль подготовки деталей под сварку и сборку узлов, а также состояния оснастки, сварочного оборудования и приборов, квалификации сборщиков и сварщиков; на стадии предварительного контроля выполняют испытания на свариваемость, включающие в себя механические испытания, металлографические исследования сварных соединений и испытания на сопротивляемость образованию горячих и холодных трещин;
• текущим (в процессе выполнения сварочных работ), предусматривающим проверку соблюдения технологии сварки, зачистки промежуточных швов, заварку кратеров и т. д.;
• окончательным контролем готовых сварных конструкций, который проводится в соответствии с требованиями, предъявляемыми к изделию.
Трудоемкость контрольных операций может доходит, до 30% общей трудоемкости изготовления сварной конст рукции.
Итак, контроль надо осуществлять, начиная с проверк* качества подготовки шва и кончая проверкой полученной сварного соединения. Качество основного металла, элект родной проволоки, присадочного металла, флюса и других материалов проверяют по сертификатам и заводским документам. Маркировка и качество должны соответствовать установленным техническим условиям и технологическому процессу сварки. Сборку под сварку и разделку шва проверяют по стандартам и техническим условиям.
Сварное соединение проверяется внешним осмотром, металлографическими исследованиями, химическим анализом, механическими испытаниями, просвечиванием рентгеновскими лучами и гамма-излучением, магнитными методами и с помощью ультразвука. Предварительно сварное соединение очищают от шлака, окалины и металлических брызг.
Внешний осмотр выявляет наружные дефекты шва. Осмотр производят невооруженным глазом или с помощью лупы с десятикратным увеличением. Размеры сварных швов проверяют шаблонами и мерительным инструментом.
Металлографические исследования начинают с засвер - ливания и последующего травления поверхности отверстия в течение 1—3 минут 10%-ным водным раствором двойной соли хлорной меди и аммония. Осадок меди удаляют водой. Засверленная поверхность должна захватывать шов и основной металл. Протравленную поверхность осматривают невооруженным глазом или с помощью лупы. При этом выявляют качество провара и отсутствие внутренних дефектов. Для ответственных сварных конструкций производят более полные металлографические исследования. Для этой цели приготовляют макро - и микрошлифы из специально сваренных контрольных пластин или из пластин, вырезанных из сварных соединений.
Химический анализ определяет состав основного и наплавленного металла и электродов, а также их соответствие установленным техническим условиям на изготовление сварного изделия. Методы отбора проб для химического и спектрального анализов предусмотрены ГОСТ.
Механические испытания сварного соединения производят либо на специально сваренных контрольных образцах, либо на образцах, вырезанных из сварного соединения. Определяют предел прочности на растяжение, ударную вязкость, твердость и угол загиба.
Рентгенодефектоскопия основана на различном поглощении лучей металлом и неметаллическими включениями. Этим методом обнаруживают поры, трещины, непро - вары, шлаковые включения (рис. 78). Рентгеновские лучи направляют на сварной шов, а с обратной стороны прикладывают рентгеновскую или фотографическую пленку со светочувствительной эмульсией. Дефектные места шва пропускают лучи с меньшим поглощением, чем сплошной металл. После проявления на пленке хорошо видны очертания дефектов шва.
Рентгеновская трубка изолируется защитным свинцовым кожухом, в котором имеется узкая щель для выхода лучей, направляемых на контролируемое изделие. Для контроля в монтажных условиях очень удобны малогабаритные отечественные рентгеновские аппараты типов РУП-120—5-1, ИРА-1 Д, ИРА-2Д, РИНА-ЗД и др. Толщина металла, которая может контролироваться этими аппаратами, находится в пределах 25—100 мм.
Просвечивание гамма-излучением также основано на различном поглощении лучей металлом и неметаллическими включениями. Гамма-излучение действует на пленку так же, как ирентгеновские, показывая очертания дефектов сварного шва. Гамма-излучение получается при ядерном распаде естественных и искусственных радиоактивных веществ (радия, мезатория, кобальта, цезия, иридия и др.). Наибольшее распространение получили более дешевые радиоактивные изотопы кобальта-60, цезия-137 и иридия-192. Гамма-излучение обладает большой проникающей способностью и позволяет контролировать металл толщиной до 350 мм. Гамма-просвечивание значительно проще, чем просвечивание рентгеновскими лучами, однако гамма-излучение вредно для человека. Поэтому ампула с радиоактивным веществом помещается в специальные переносные свинцовые контейнеры или в стационарные аппараты с дистанционным управлением. Контейнер устанавливают против контролируемого участка, а с обратной стороны сварного шва помещают кассету^с пленкой. Затем с помощью дистанционного управления выдвигают ампулу из аппарата или открывают щель в контейнере для выхода гамма-излучения.
Магнитные методы контроля основаны на создании неоднородного магнитного поля с образованием потоков рассеяния в местах расположения дефектов шва при намагничивании контролируемого изделия. Применяются метод порошковой дефектоскопии, магнитографический метод, индукционный и др.
Метод порошковой дефектоскопии является наиболее простым, но и менее четким. После намагничивания изделия сварной шов опыливают магнитным порошком из железной окалины или покрывают суспензией магнитного порошка (смесь с керосином, маслом или другими веществами). На поверхности изделия порошок распределяется неравномерно, а по скоплениям порошка определяют расположение дефектов в сварном шве. Для большей нагляд-
а д Рис. 78. Схемы просвечивания сварных швов: а — рентгеновским излучением; б — гамма-излучением; 1 — усиливающие экраны; 2 — рентгеновская пленка; 3 — кассета; 4 — рентгеновское излучение; 5 — рентгеновская трубка; 6 — гамма-излучение; 7 — свинцовый кожух; 8 — ампула радиоактивного вещества |
ности магнитный порошок или суспензию окрашивают в яркие цвета.
Магнитографический контроль применяется при контроле сварных швов магистральных трубопроводов. Метод заключается в следующем: состояние сварного шва записывают на специальную пленку, применяемую для магнитной звукозаписи. Для этого на сварной шов трубы накладывают ферромагнитную пленку, а затем намагничивают шов соленоидом или обкатывают дисковым магнитом. В зависимости от вида и дефектов шва в соответствующих местах пленки будет та или иная степень намагниченности. Для воспроизведения записанных на пленку дефектов ее пропускают через специальное устройство, преобразующее магнитную запись в звуковую (магнитофон) или электрическую (электрофонный осциллограф). Наиболее совершенные аппараты для магнитографического контроля содержат осциллографы, они позволяют проверять сварные швы со скоростью 0,5—1 м/мин. Кроме высокой производительности, этот метод отличается большой точностью (не уступающей рентгеновскому и гамма-просвечиванию), простотой выполнения, дешевизной применяемых материалов, возможностью проверки швов в различных пространственных положениях и безопасностью работы.
Индукционный метод контроля основан на использовании магнитного потока, рассеиваемого в местах расположения дефектов шва, для наведения электродвижущей силы в специальной катушке, передвигаемой вдоль свариваемых кромок изделия. Наведенный индукционный ток усиливается и подается на телефон, сигнальную лампу или специальный магнитоэлектрический прибор. По звуку, отклонению стрелки прибора или зажиганию специальной лампы определяют расположение дефекта. Индукционный контроль производят дефектоскопом типа МД-138.
Ультразвуковой метод контроля основан на способности ультразвуковых колебаний проникать в толщу металла на значительную глубину и отражаться от неметаллических включений и других дефектных участков шва. Ультразвуковые дефектоскопы работают по следующему принципу. Пластинка из кварца или сегнетовой соли под действием переменного электрического поля высокой частоты дает ультразвуковые колебания, которые с помощью щупа направляются на проверяемое сварное соединение. На границе между однородным металлом и дефектом эти волны частично отражаются и воспринимаются второй пластинкой. Под действием переменного давления ультразвуковой волны на гранях этой пластинки появляется переменная разность потенциалов, зависящая от интенсивности отраженной волны. Электрические колебания от граней пластинки усиливаются и направляются в осциллограф. На экране осциллографа одновременно изображаются импульсы излучаемой и отражаемой от дефектов волн. По относительному расположению этих импульсов и по интенсивности отраженного импульса можно судить о местонахождении и характере дефекта в сварном шве.
В настоящее время выпускают ультразвуковые дефектоскопы, работающие на одной пластинке, которая подает короткими импульсами ультразвуковые волны на контролируемый шов. Отраженные волны воспринимаются этой же пластинкой в промежутки времени между импульсами излучения. При этом получается высокая четкость излучаемых и отраженных ультразвуковых волн. Ультразвуковой метод контроля позволяет обнаружить все основные дефекты сварных швов. Кроме того, ультразвуковые дефектоскопы типа УЗД-7н имеют специальное приспособление для настройки на заданную толщину шва и определения глубины расположения обнаруженного дефекта. Недостатками ультразвукового контроля являются трудности проверки швов толщиной менее 10 мм и определения характера дефекта.
Для контроля деталей из цветных металлов и сплавов, пластмассы и других материалов применяют капиллярный метод дефектоскопии.
Сущность капиллярной дефектоскопии заключается в том, что на контролируемую поверхность наносят слой специального цветоконтрастного жидкого индикаторного вещества.
Поверхностные дефекты представляют собой капиллярные сосуды, способные «всасывать» смачивающие их жидкости; в результате такие дефекты оказываются заполненными индикаторным веществом. Избыток индикаторной жидкости удаляют с поверхности. Затем с помощью проявителей индикаторную жидкость извлекают и на поверхности появляются очертания дефекта.
Одним из способов капиллярного метода контроля яв ляется «керосиновая проба». На поверхность детали наносят слой керосина и выдерживают в течение 15—20 мин. Затем ветошью тщательно протирают поверхность насухо. Далее на поверхность наносят проявитель, представляющий собой водно-меловой раствор. При высыхании мел вытягивает керосин и на поверхности появляется керосиновое пятно. Способ весьма прост, но образующееся пятно не дает полных сведений о форме и размерах дефекта.
Поэтому более широко для выявления поверхностных дефектов применяется способ красок. В качестве индикаторной жидкости рекомендуются растворы: 50% бензола, 50% скипидара с краской судан IV (судан III); 40% керосина, 40% бензола, 20% скипидара с краской судан IV.
Судан прибавляют к индикаторной жидкости в количестве до 1 %.
На контролируемую поверхность наносят мягкой кистью индикаторную жидкость и выдерживают 3—5 мин. Затем поверхность очищают от остатков индикаторной жидкости ветошью, смоченной 5%-ным раствором кальцинированной соды, и протирают насухо. Далее на контролируемую поверхность с помощью пульверизатора наносят проявитель. Состав проявителя: 300 г мела (зубной порошок), 0,5 л воды, 0,5 л этилового спирта.
Первое наблюдение следов дефекта проводится через 3—5 мин после высыхания мела. Трещины проявляются в виде красных полос, поры — в виде пятен. Второе наблюдение ведется через 20—30 мин. За это время жидкость растекается, ширина полос увеличивается. При ширине дефекта 0,01 мм ширина цветного следа равна 1 мм.
Разновидностью капиллярного метода служит люминесцентный способ контроля дефектов, основанный на свойстве некоторых веществ светиться при облучении их ультрафиолетовыми лучами.
Очищенные и обезжиренные детали помещают на 10 — 15 мин в ванну с флюоресцирующей жидкостью, имеющей состав 50% керосина, 25 — бензина и 25% трансформаторного масла с добавкой флюоресцирующего красителя. Жидкость проникает в дефекты и там задерживается Остатки жидкости смывают холодной водой, деталь сушат сжатым воздухом и припудривают порошком селикагеля. При освещении детали ультрафиолетовым излучением порошок селикагеля, пропитанный флюоресцирующей жидкостью, будет ярко светиться желто-зеленым светом. Трещины будут видны в виде широких полос, поры — в виде пятен.
Люминесцентные дефектоскопы позволяют выявить трещины шириной 0,01 мм.