Методы микроскопии
К визуальным методам, основанным на использовании электромагнитных колебаний с длиной волны, намного меньшей размеров изучаемого объекта, относятся двойное лучепреломление, описанное в главе 7, а также различные варианты микроскопии.
Пленки полимеров, предварительно подвергнутые растяжению, обнаруживают двойное лучепреломление, величина которого повышается с увеличением приложенного напряжения. Некоторые исследователи связывают двойное лучепреломление с образованием в полимере при его растяжении кристаллической решетки. Однако двойное лучепреломление у полимера свидетельствует лишь об ориентации цепей, но не о кристаллизации. Однозначное заключение о наличии или отсутствии кристаллической фазы можно сделать только на основании структурных методов исследования - рентгенографического и электронографического анализа.
Использование микроскопии для контроля качества материалов важно как для практических, так и для научных целей. С помощью методов непосредственного наблюдения - методов микроскопии - может быть решена одна из фундаментальных проблем в исследовании синтетических материалов - установление соответствия между структурой и свойствами.
Существует три основных метода: световая оптическая микроскопия, трансмиссионная электронная микроскопия (ТЭМ), растровая (или сканирующая) электронная микроскопия (РЭМ или СЭМ). Методы различаются сферами применения, определяемыми разрешением микроскопа. Разрешающая способность микроскопов ам определяется длиной волны излучения Я, показателем преломления среды между образцом и линзой ппр и углом приема линзы вм:
ам = Л/(п„р - Sin 0J.
Оптический микроскоп может измерять структуры размерами около 0,4 мкм, РЭМ - до 0,01 мкм, а ТЭМ - до 0,0001 мкм.
Световая микроскопия сегодня чаще всего использует поляризованное излучение, поскольку кристаллизация и ориентация обусловливают эффект двойного лучепреломления. В частности, для получения информации об упорядоченном состоянии надмолекулярных образований предлагается [6] использовать экспериментальную зависимость рассеяния поляризованного света от величины угла рассеяния.
Для изучения изменений кристаллического состояния, ориентации и конформации молекул полимера в процессе механической обработки может быть использована реооптическая ИК - спектроскопия с Фурье-преобразованием в варианте поляризационной ИКС в ближней и средней областях спектра [7]. При исследовании процессов кристаллизации, осаждения полимеров и размеров образующихся частиц непосредственно в химическом реакторе применяется микроскопия со сканирующим лазером [8].
Метод электронной микроскопии является одним из наиболее перспективных методов изучения структуры полимеров, так как он позволяет рассмотреть макромолекулы, их взаимное расположение и надмолекулярные образования.