Аксиоматическая система арифметики Пеано
Кругозор людей чересчур ограничен, и они считают человека центром Вселенной
Р. Фейнман (13).
10.1. Системы счисления и числа
Число как важнейшее математическое понятие возникло в древнем мире и имеет сложную историю развития как наука о числах - арифметика (7, с. 77-79, 634-638). Позиционные системы счисления, применяемые в науке и инженерной практике, базируются на аксиоматической системе арифметики, основанной Г. Гроссманом и Дж. Пеано в середине XIX века, ставшей затем фундаментом всей классической математики (7, с. 79). Из этой системы, основанной на аксиомах Пеано, следует, что расстояния между точками в любом множестве точек постоянны, хотя геометрические масштабы множеств м. б. произвольно преобразованы различными методами в другие множества с другими масштабами. Главной особенностью положений Пеано при их применении в концепции двух видов энергии является то, что расстояние между точками произвольно может быть изменено лишь в одном случае, когда характеристические параметры точек (как материальных объектов) не взаимосвязаны, т. е. являются скалярными величинами.
Придание всем параметрам энергии векторных свойств существенно ограничивает применение арифметики в квантовом вакууме. В этом случае «гипотетические векторы», характеризующие разные потенциалы энергии, являются точками, лежащими в разных параллельных плоскостях, т. к. имеют ненулевое значение разности потенциалов. Последнее является фундаментом классической механики.
Действие суперпозиции над числами-скалярами характеризуется известными свойствами действий над арифметическими числами, в отличие от действий над векторами, которые в переменных масштабах д. б. основаны на новых исходных положениях и системах счисления. Именно это происходит при движении в бесконечно малые геометрические масштабы квантового вакуума.
В вещественном мире как пространстве «солитона Вселенной» арифметическая система Пеано работоспособна в связи с постоянством потенциала энергии и, следовательно, в постоянных масштабах энергии и, согласно теореме Грина, только в однородных пространствах, ограниченных «плоскими участками» сферических оболочек, и пригодна только для исследования энергетических процессов, находящихся в динамически равновесных состояниях (АЕ;р<^>Ем), как статических, вследствие неразличимости высоких частот преобразования двух видов энергии. Различные неоднородности материи, характеризуемые в математике и физике такими понятиями, как разрыв функций и нарушение сплошности однородных сред, обнаруживаются только вследствие масштабной разнородности, когда человек считает энергию как 1, 2, 3, а природа реализует счет как е е2, е3 ... Ноль степени (е°=1) опущен не по ошибке. В квантовом вакууме в качестве параметра ему нет места во всех системах счисления параметров сконденсированной компоненты энергии, поскольку её модель - последовательность простых чисел - начинается не с нуля и даже не с единицы (2, 3, 5,7 ...). Единица принадлежит к числовой модели несконденсированной компоненты энергии, взаимосвязанной со сконденсированной, и одновременно является параметром надсистемы.
Последовательность простых чисел порождается последовательностью Фибоначчи (1, 1, 2, 3, 5, 8 ...), поэтому начинается с числа 2. Совпадение в последовательностях чисел 2, 3, 5 рассматриваем как условие математико-физического сопряжения двух видов энергии. Ноль может быть использован только в качестве условия начала счёта порядков взаимосвязанных производных и показателей степеней в сопряжённых с ними степенных рядах. Речь идёт о сопряжении моделей двух видов энергии и аналитической взаимосвязи производных энергии, рассмотренных в главе 6. Нулевой показатель порядка и степени даёт единицу - начало числовой последовательности как числовой модели параметров единичного соли - тона - элемента надсистемы. Таким образом, ноль и единица являются условиями сопряжения систем с надсистемой.
При появлении в расчётах «слишком» малого числа (как и большого) необходимо переходить в новый диапазон геометрических масштабов. Переход в новый диапазон масштабов - методическое (геометрическое) решение физической проблемы: скорости протекания энергетических процессов в неортогональных токах энергии - «чрезмерно велики». Только переход в новый диапазон геометрических масштабов позволяет выполнить сквозной расчет динамических процессов на всех участках системы «солитон - тор - вихревая трубка - тор - солитон». Лавинная конденсация - это последовательно протекающие на участке вихревой трубки энергетические процессы. В лавинных процессах это результат взаимодействия неортогональных токов Е в вихревой трубке, существование которых растянуто во времени, поэтому конденсирующиеся в токи смещения^, как показано на схеме (рис. 6, с. 94).
Однако в связи с этим возникают методические проблемы, неразрешимые в концепции одного вида энергии, которые Р. Фейнман изложил следующим образом (13, с. 44). «Меня всегда беспокоило, что, согласно физическим законам, как мы понимаем их сегодня, требуется бесконечное число логических операций в вычислительной машине, чтобы определить, какие процессы происходят в сколь угодно малой области пространства за сколь угодно малый промежуток времени? Почему необходима бесконечная работа логики для понимания того, что произойдёт на крохотном участке пространства-времени? Поэтому я часто высказывал предположение, что, в конце концов, физика не будет требовать математической формулировки».
Таким образом, арифметика Пеано имеет «технические границы применимости»: действует в границах взаимной «значимости чисел» и не действует применительно к бесконечно большим и бесконечно малым числам.
При решении задач применяют различные методы линеаризации. Например, вводят границы и начальные условия, разлагают в ряд, вводят относительные системы счисления, в т. ч. системы квантовых чисел и др. Неоднородности возникают всегда, как только в бесконечно большом количестве оболочек, заполняющих пространство солитона и пересекающихся в этом пространстве, появляются значимые плотности сконденсированной энергии.
В переменном масштабе энергии расстояния между точками переменны. Шаги дискретности в преобразованиях двух видов энергии так же переменны. При движении в квантовый вакуум, как одностороннее пространство, положения Пеано подлежат «адаптации» в соответствующие ограниченные диапазоны геометрических масштабов сконденсированной энергии - всегда двусторонние пространства ортогональных токов энергии, которые являются следствием существования одностороннего многомерного пространства. Неортогональные токи разделяют одностороннее пространство и образуют тем самым несчётное множество солитонов - двусторонних пространств. Из этого следует, что физические теории, основанные на мерности пространств более трёх, в концепции одного вида энергии для анализа квантового вакуума также не пригодны, т. к. авторы в своих исходных положениях и теориях «не позаботились об адаптации традиционной арифметики в новые односторонние многомерные пространства», что приводит к известным противоречиям и парадоксам. Поэтому существующие физические теории не пригодны и для анализа энергии в переменных масштабах, т. е. быстро протекающих и необратимых процессов, что привело к возникновению феноменологической теории необратимых процессов термодинамики Томсона и Онсагера (30).
Для целей анализа квантового вакуума арифметика дополнена физическим содержанием. Суммирование чисел-векторов рассматривается в качестве математической модели движения энергии в «плоской оболочке» солитона, толщина которой ограничена диапазоном «взаимно значимых чисел». Произведение чисел - векторов является моделью движения энергии в ортогональном направлении. Концептуальным основанием для существования арифметики Пеано и, следовательно, для приведённых утверждений является предположение фундаментального свойства Вселенной: наблюдаемый участок Вселенной - это относительно небольшой участок «толстой» плоской оболочки Вселенной-солитона.