ФЛЮСЫ СВАРОЧНЫЕ

Сварочными флюсами называют специально приготовленные неме­таллические гранулированные порошки с размером отдельных зерен 0,25—4 мм (в зависимости от марки флюса). Флюсы, рас плавляясь, создают газовый и шлаковый купол над зоной сва рочной дуги, а после химико-металлургического воздействия в дуговом пространстве и сварочной ванне образуют на поверх ности шва шлаковую корку, в которую выводятся окислы, сера, фосфор, газы.

Б зависимости от свариваемых металлов и требований, предъ являемых при этом к металлургическим процессам, флюсы могут иметь самые различные композиции. Флюсы принято разделять в зависимости от способа их изготовления, назначения и химиче­ского состава. По способу изготовления флюсы разделяют па нсплавлепые (керамические) и плавленые.

Технология изготовления керамических флюсов сходна с тех­нологией изготовления покрытий электродов. Сухие компо­ненты шихты замешивают на жидком стекле; полученную массу измельчают путем продавливання ее через сетку на специальном устройстве типа мясорубки, сушат, прокаливают при тех же режимах, что и электродные покрытия, и просеивают для полу­чения частиц зерен определенного размера. Частицы сухой смеси компонентов могут скрепляться спеканием при повышенных температурах без расплавления. Полученные комки гранули­руют до необходимого размера (так называемые спеченные флюсы).

Неплавленые флюсы могут быть приготовлены и в виде про­стой механической смеси (флюсы — смеси). Из группы неплавле - 11ы х флюсов наибольшее распространение получили керамиче­ские флюсы, состав которых близок к составу покрытий основ­ного типа. Легировадие металла такими флюсами достигается введением в них необходимых ферросплавов. Флюсы при изго­товлении не подвергаются операции расплавления, поэтому количество и сочетание ферросплавов и других легирующих элементов может быть различным, что позволяет легко получать любой требуемый состав металла наплавки.

Эта особенность флюсов является главным их преимущест­вом. Однако при использовании таких флюсов химический состав металла шва сильно зависит от режима сварки. Изменение вели­чины сварочного тока, и особенно напряжения дуги, изменяет снитмошенпе масс расплавленных флюса и металла, а следова­тельно, и состав металла шва, который может быть неоднородным даже по длине шва.

Керамические флюсы обладают и другим серьезным недо - статког. г — легко разрушаются вследствие малой механической прочности его частиц, что делает его разнородным по размерам.

I )тн флюсы имеют большую стоимость и при сварке обычных сталей не применяются. Основная область их использования — сварка высоколегированных специальных сталей и наплавочные работы.

Плавленые флюсы представляют собой сплавы окислов и солей металлов. Процесс изготовления их включает следующие стадии: расчет и подготовку шихты, выплавку флюса, грануля­цию, сушку после мокрой грануляции и просеивание. Предвари­тельно измельченные и взвешенные в заданной пропорции ком­поненты смешивают и загружают в дуговые или пламенные печи. После расплавления и выдержки, необходимой для завершения реакций, жидкий флюс при температуре около 1400° С выпускают из печи.

Грануляцию можно осуществлять сухим и мокрым способами. При сухом способе флюс выливают в металлические формы, после остывания отливку дробят в валках до крупки размерами 0,1—3 мм, затем просеивают. Сухую грануляцию применяют для гигроскопичных флюсов (содержащих большое количество фтористых и хлористых солей). Преимущественно это флюсы для сварки алюминиевых и титановых сплавов. При мокром спо­собе грануляции выпускаемый из печи тонкой струей жидкий флюс направляют в бак с проточной водой. В некоторых слу­чаях струю флюса дополнительно над поверхностью воды раз­бивают СИЛЬНОЙ струей воды.

Высушенную при температуре 250—350° С массу дробят и пропускают через два сита с 16 и 400 отверстиями на 1 см2. Остаток на втором сите представляет собой готовый флюс. Обычно пто неровные зерна от светло-серого до красно-бурого или корич­невого цвета (в зависимости от состава).

Хранят и транспортируют флюсы в стальных бочках, поли­этиленовых мешках и другой герметичной таре.

Принципиальное отличие плавленого флюса от керамического состоит в том, что плавленый флюс не может содержать леги­рующих элементов в чистом виде, в процессе выплавки они неиз­бежно окислятся. Легирование плавлеными флюсами происхо­дит путем восстановления элементов из окислов, находящихся во флюсе.

В основу классификации флюсов по химическому составу положено содержание в них окислов и солей металлов. Разли­чают окислительные флюсы, содержащие в основном окислы МпО и Si02. Для получения необходимых свойств флюса в него вводят и другие составляющие, например плавиковый пшат, а также весьма прочные окислы CaO, MgO, А1203, которые в сва­рочных условиях практически не реагируют с металлом.

Чем больше содержится во флюсе МпО и Si02, тем сильнее флюс может легировать металл кремнием и марганцем, но и одновременно тем сильнее он окисляет металл. Чем сложнее легирована сталь, тем меньше должно содержаться во флюсе МпО и Si02, в противном случае недопустимо возрастает окисле­ние легирующих элементов в стали; нежелательным может быть и дополнительное легирование металла кремнием и марганцем. Поэтому окислительные флюсы преимущественно применяют при сварке углеродистых и низколегированных сталей. Безокисли - телыше флюсы практически не содержат окислов кремния и мар­ганца или содержат их в небольших количествах. В них входят фториды СаГ2 и прочные окислы металлов. Их преимущественно используют для сварки высоколегированных сталей.

Бескислородные флюсы целиком состоят из фторидних И хло- ридных солей металлов, а также других составляющих, не содер­жащих кислород. Их используют для сварки химически актив­ных металлов (алюминия, титана и др.).

В связи с широким применением плавленых флюсов на основ­ные марки флюсов существует ГОСТ 9087—69 «Флюсы свароч­ные плавленые», в котором регламентирован химический состав 10 марок плавленых флюсов, указаны цвет, строение и размеры зерна и даны рекомендации по области их применения (табл. 19).

Для двух марок флюсов ЛН-20 и АН-26 сделано разделение не толі, ко по размеру зерна, но и в зависимости от строения зерен флюса — стекловидного или пемзовидного характера. Строение зерен флюса зависит от состава расплава флюса, степени пере­грева в момент выпуска в воду, в связи с чем флюс может полу­читься плотным, с прозрачными зернами — «стекловидный», либо пористым, рыхлым — «пемзовидным». Пемзовидный флюс при том же составе имеет в 1,5—2 раза меньший удельный вес. Эти флюсы хуже защищают металл от действия воздуха, по обеспе­чивают лучшее формирование швов при больших силах тока и скоростях сварки.

Флюсы различают также ы по размеру зерен. Так, флюсы АН-348-А; ОСЦ-45; H-20-C; АП-26-І1 имеют размер зерен 0,35—3 мм; флюсы АН-348-AM; ОСЦ-45-М; ФЦ-9; Н-20-0,25— 1,6 мм; флюсы АН-8; АН-22 и AH-2GC — 0,35—4 и флюс AH-2G-CH —0,25—4 мм. Стекловидные флюсы с размером зерен не более 1,6 мм предназначены для сварки электродной проволокой (диаметром ие свыше 3 мм).

В обозначении марки флюса буквы означают: М — мелкий, С — стекловидный, П — пемзовидный, СП — смешанный. Пример условного обозначения флюса но стандарту: флюс АН-348-AM — ГОСТ 9087-69.

Так как химический состав металла шва тесно связан с хими­ческой активностью флюса и составом сварочной проволоки, флюс для сварки различных марок углеродистой и низколеги­рованной стали и марку проволоки выбирают одновременно, т. е. вы­бирают систему флюс — проволока. Для предупреждения обра­зования в швах пор металл швов должен содержать не менее 0,2—0,4% кремния и марганца. Это и определяет систему выбора флюса и сварочной проволоки.

В настоящее время используют три основные системы.

1. Низкоуглеродистая электродная проволока (Св-08, Св-08А і т. и.) и высокомарганцовистый (35—45% МпО) флюс с высоким содержанием кремнезема (40—45% Si02). Легирование шва крем­нием и марганцем происходит за счет кремнемарганцевосстанови - тельных процессов, количество восстанавливаемого из флюса в шов легирующего элемента сравнительно невелико (Si щс 0,4%; Мм 0,7%). При использовании керамического флюса легиро­вание металла шва марганцем и кремнием происходит путем их введения во флюс в виде ферросплавов.

2. Низкоуглеродистая проволока, легированная до 2% Мп (типа Св-10Г2), и высококремнистый (кислый) флюс, содержащий 40—42% Si()2 и не более 15% МпО. В этом случае легирование шва марганцем происходит за счет проволоки, а кремнием — за счет восстановления его из флюса.

3. Среднемарганцовистая электродная проволока (~ 1 % Мп) и среднемарганцовистый (~ 30% Мп) кислый флюс. Легирова­ние металла шва марганцем происходит за счет проволоки и мар­ганцевосстановительного процесса из флюса, кремнием — за счет кремневосстановительного процесса из флюса. Другие марки флюса, предназначенные для сварки различных высоко - или сложнолегированных сталей и цветных металлов, не стандарти­зованы и поставляются по различным ведомственным техниче­ским условиям (табл. 20).

Для электрошлаковой сварки применяют флюсы общего назна­чения (АН-348-А, АН-22, 48-ОФ-6, АНФ-5) и флюсы, предна­значенные именно для данного процесса (АН-8 и АН-25). Содер­жание в этих флюсах окислов титана обеспечивает высокую электропроводность их в твердом состоянии, что важно в начале процесса, при возбуждении дуги для создания начального объема шлаковой ванны. Лучшим с технологической точки зрения явля­ется флюс АН-8.

Таблица 20. Флюсы сварочные плавленые безошк лительные и бескислородные

Содержание (не более),

У0 но массе

Мирка

флюса

Особен­

ности

с

W

О

с

6

С

сі

О

О

%

Ёч

05

и

Рч

ес

ъ

С

о

pH

г/3

С-

Прішерпос

назначение

лило

ІЗезокис-

л и тельный

2—5

-

39—44

16—

20.5

13—

10

19—23

-

1,0

0.0S

0,05

Сварка хромони­келевых сталей

Л11-70

То же

8,0

30-40

25—35

20—30

1-3

0,00

0,05

Наплавка высоко­легированных ста­лей

4h-Oc[>_(,

»

3,5—

0,0

0,3

20—24

16—20

2,0

50—00

1,0

0,025

0,025

Дуговая и элскт - рошлаковая свар-

ЛИФ-8

»>

2,0

25—35

12-18

45—55

1.0

0.05

0.05

ка хромоникеле-

ЛМФ-5

Бескисло­

родный

2,0

7.,—80

17—

25

1,0

0,05

0,02

пых сталей при работе сварных соединений всиль­но агрессивной среде

При механизированной сварке меди и ее сплавов успешно используют обычные марки флюсов ОСЦ-45, АН-348-А, АН-20, А11-26, т. е. флюсов, широко применяемых для сварки сталей. Для сварки алюминия и его сплавов по слою флюса разработаны две основные марки бескислородных флюсов: АН-А1 и АН-А4 (табл. 21).

Таблица 21. Составы флюсов, предназначенных для сварки алюминия и его сплавов, титана и его сплавов

Марка

флюса

Состав, %

Назначение

ЛІІ-А1

Хлористый калин.................

. . 50

Дуговая сварка алюминия

Хлористый натрий, . . .

. . 20

Криолнт...............................

ЛП-А4

Хлористый калий. . . . .

Дуговая сварка алгоми-

Криолнт.................................

. . 30

ниево-магштевых сплавов

Хлористый литий.................

. . 20

ЛИ А301 )

Хлористый калий.................

. . 20—60

Электрошлаковая сварка

ЛИ Л302 )

Хлористый литий.................

. . 10—40

алюминия

ЛІІЛ304 J

Хлористый барий.................

. . 5—30

Фтористый литий.................

. . 2—20

ЛИ Т1

Фтористый кальций. . .

. . 79.5

Дуговая сварка титана

Хлористый барий. . .

. . 19

толщиной 2—8 мм

Фтористый натрий. .

. . 1,5

АН ТД

Фтористый кальций. . .

. . 85.5

То же

Хлористый барий...

. . 10

Фтористый натрий. . .

. 1,5

Эти флюсы изготовляют сплавлением входящих в их состав солей или механическим их смешиванием. Флюс АП-А1 пригоден только для сварки алюминия. При сварке алюминиево-магниевых сплавов натрий, входящий в состав флюса в виде NaCl, попадая в сварочную ванну, восстанавливается магнием, что приводит к пористості! итвов, а это существенно снижает пластичность металла шва. По указанной причине для сварки алюминиево- магниевых сплавов применяют флюс АН-А4, который не содер­жит солей натрия. Для электрошлаковой сварки алюминия также разработаны специальные флюсы.

При сварке титана используют бескислородные флюсы типа АН-Т1, АН-ТЗ и др., в состав которых в основном входят фтори­стые и хлористые соединения. Фтористые соединения могут реагировать с окислами титана и растворять их, но для обеспе­чения необходимых технологических свойств флюса в них вводят хлористые соединения.

§ 5. ЗАЩИТНЫЕ ГАЗЫ

Защитные газы делятся на две группы: химически инертные и активные. Газы первой группы с металлом, нагретым и рас­плавленным, не взаимодействуют и практически не растворяются в них. При использовании этих газов дуговую сварку можпо выполнять плавящимся или неплавящнмся электродом. Газы второй группы защищают зону сварки от воздуха, но сами либо растворяются в жидком металле, либо вступают с ним в химиче­ское взаимодействие.

Ввиду химической активности углекислого газа по отноше­нию к нагретому вольфраму (окисление и разрушение вольфрама) для дуговой сварки в углекислом газе используют плавящиеся электроды или неплавящиеся (угольные или графитовые).

К химически инертным газам, используемым при сварке, относятся аргон и гелий (табл. 22). Из химически активных газов основное значение имеет углекислый газ.

Таблицп 22. Свойства основных инертных газов — аргона и гелия

Газ

Атомный

вес

Плотность при 20 °С, вг/мя

Температура кипения, °С

Коэффициент

теплопровод­

ности,

кал/см • с • °С

Потенциал

ионизации.

В

Аргон.... Гелий....

39.944

4,003

1,662

0,1785

—185,5

—268,9

0,378 • 10-4 3,32 • 10'4

15.7

24.5

Аргон — газообразный чистый поставляется по ГОСТ 10157—73 трех сортов: высший, первый и второй. Содержание аргона соот­ветственно равно: 99,99%; 99,98%; 99,95%. Примесями служат кислород, азот и влага.

Хранится и транспортируется аргон н газообразном виде в стальных баллонах под давлением 150 ат, т. е. в баллоне нахо­дится 6,2 м* газообразного аргона в пересчете на температуру 20° С и давлепие 700 мм рт. ст. Возможна также транспорти­ровка аргона в жидком виде в специальных цистернах или сосу­дах Дыоара с последующей его газификацией. Баллон для хра­пения аргона окрашен в серый цвет, надпись зеленого цвета.

Аргон высшего сорта предназначен для сварки химически активных металлов (титана, циркония, ниобия) и сплавов па их основе. Аргон первого сорта рекомендуется для сварки неплавя - щимся электродом сплавов алюминия, магния и других металлов, менее чувствительных к примесям кислорода и азота. Аргон второго сорта используют при сварке коррозионно-стойких сталей.

Гелий — газообразный чистый поставляют по техническим условиям. Содержание примесей в гелии высокой частоты не бо­лее 0,02%, в техническом до 0,2%. Примеси: азот, водород, влага. Хранят и транспортируют гелий так же, как и аргон, в стальных баллонах водяной емкостью 40 л при давлении 150 ат. Цвет баллона коричневый, надпись белого цвета. В связи с тем, что гелий в 10 раз легче аргона, расход гелия при сварке увеличивается в 1,5—3 раза.

Углекислый газ поставляется по ГОСТ 8050—76. Для сварки используют сварочную углекислоту сортов I и II, которые отли­чаются лишь содержанием паров воды (соответственио 0,178 и 0,515 Н30 в 1 м3 СО„). Применяют иногда и пищевую углекислоту, имеющую в баллоне в виде примеси свободную воду, в связи с чем требуется особенно тщательное осушение газа. Углекислоту транспортируют и храпят в стальных баллонах или цистернах большой емкости в жидком состоянии с последующей газифика­цией на заводе, с централизованным снабжением сварочных постов через рампы. В баллоне емкостью 40 л содержится 25 кг С02, дающего при испарении 12,5 м3 газа при давлении 760мм рт. ст. Валлон окрашен в черный цвет, надписи желтого цвета.

При применении углекислого газа вследствие большого коли­чества свободного кислорода в газовой фазе сварочная прово­лока должна содержать дополнительное количество легирующих элементов с большим сродством к кислороду, чаще всего Si и Мл (сверх того количества, которое требуется для легирования металла шва). Наиболее широко применяется проволока Св-08Г2С.

При применении защитных газов следует учитывать техноло­гические свойства газов (например, значительно больший расход гелия, чем аргона), влияние на форму проплавления и форму шва и стоимость газов.

Стремление уменьшить повышенное разбрызгивание металла и улучшить формирование шва при сварке в углекислом газе дало толчок к применению смесей углекислого газа с кислородом (2 5%). В этом случае изменяется характер переноса металла;

он переходит в мелкокапельный; потери металла на разбрызгива­ние уменьшаются на 30—40%.

При сварке сталей по узкому зазору с целью стабилизации процесса сварки и уменьшения расхода дорогого и дефицитного аргона вполне целесообразно применение двойных смесей (75% Аг + Т 25% С03) и тройных смесей (аргона, углекислого газа и кис­лорода). Для алюминиевых сплавов весьма эффективно с точки зрения производительности применение смеси, состоящей из 70% Не и 30% Аг. В этом случае значительно увеличивается толщина металла, свариваемого за один проход, и улучшается формирование шва. Газовые защитные смеси имеют весьма зна­чительные перспективы, но широкое их применение требует орга­низации централизованного снабжения сварочного производства смесями нужного состава. Только в этом случае применение сме­сей может дать значительный экономический эффект.

Комментарии закрыты.