ФИЗИЧЕСКИЕ ОСНОВЫ МНОГОЭЛЕКТРОДНОЙ НАПЛАВКИ
Особенности плавления электродного металла
В многоэлектродной системе каждый электрод плавится в определенной части ванн*», где он отдает накопленную теплоту. Процесс плавления электродного металла во многом определяет производительность наплавки, глубину и равномерность проплавления основного металла, физико-химические процессы, протекающие в ванне жидкого металла и при контактировании капель электродного металла с газовой средой и флюсом.
Плавление электродов при многоэлектродной наплавке происходит дискретно (прерывисто) за счет периодического возникновения дуги на каждом из них в зависимости от сопротивления дугового промежутка. Поведение дуги определяется комплексным воздейст-
вием электрических, магнитных, химических и газо - пмродинамических факторов Дуга стремится гореть в месте наименьшего расстояния между электродом и изделием при минимальном сопротивлении и падении напряжения.
Скорость возникновения дуги на электродах и время ее существования оказывает большое влияние на производительность процесса, глубину проплавления и равномерность расплавления основного металла. С уьели - чением частоты возникновения дуги на электродах растет производительность и увеличивается глубина проплавлення. Частота возникновения дуги нг электродах зависит от сварочного тока, напряжения, диаметра электрода, скорости наплавки, состава защитной среды и других факторов.
Во время наплавки в системе электродов может гореть одна или несколько дуг одновременно. Число горящих дуг зависит от напряжения, диаметра и скорости подачи электродов в зону наплавки. При низком напряжении и минимальной скорости подачи даже при очень большом числе электродов горит только одна дуга. Если напряжение увеличить, то возможно горение нескольких дуг.
Осциллографические исследования показывают, что при наплавке под флюсом началу горения дуги на каждом электроде предшествует короткое замыкание с изделием длительностью 0,01—0,08 с, после чегс возбуждается дугоьой процесс. Ток короткого замыкания в одном из электродов вызывает незначительные искажения нулевых линий осциллограмм прилегающих электродов. Установившийся дуговой процесс наступает через 1,5—1,6 с, когда продолжительность горения дуг на отдельных электродах составляет 0,05—0,2 с. Максимальная продолжительность горения дуг наблюдается у крайних электродов.
С увеличением скорости подачи электродов продолжительность горения дуг возрастает. Для каждого диаметра проволоки при определенном напряжении существует критический ток (критическая скорость подачи электродов), когда дуги на всех электродах горят постоянно. Это увеличивает глубину проплавления основного металла.
Плавление многоэлектродной системы под флюсом характеризуется одновременным переносом капель
металла как на электродах, где горит дуга, так и на других электродах. В местах горения дуги металл переносится крупными и мелкими каплями в течение всего периода существования дуги. На других электродах он переносится в основном мелкими каплями и, как правило, в тот период фазы переменного тока, который существует на горячем электроде. Это лишний раз подтверждает тот факт, что наличие электрического поля вокруг, системы электродов влияет на их плавление.
При сварке в среде защитных газов процесс переноса капель легко наблюдать визуально, особенно при наплавке тонкой проволокой (диаметром 0,8—1,2 мм). В начальный период образования капля за счет сил поверхностного натяжения движется вверх по электроду, а затем, когда ее диаметр достигает 3—4 мм, отрывается от электрода под действием веса и электродинамических сил. Во время отрыва капля несколько вытягивается и иногда замыкает межэлектродный промежуток. В этот момент наблюдается интенсивное разбрызгивание металла. Однако бывают случаи и свободного полета капли в межэлектродном промежутке.
Средняя температура капель на электроде при мно - гоэлек'!родной наплавке под флюсом на переменном токе достигает 2200 °С.
А. П. Сущенко достаточно подробно исследовал процесс плавления электродов при широкослойной наплавке на постоянном токе. Им показана форма дуговых импульсов, получены средние частоты и суммарное время их существования. Согласно его представлениям во время многоэлектродной наплавки на постоянном токе система работает в импульсном режиме, длительность и период повторения импульсов не постоянны, Форма импульсов трапециевидная, возникновение импульса в одном из электродов по времени никогда не совпадает с моментом возникновения импульсов в других электродах. В большинстве случаев возникающий импульс подавляет (прекращает) течение импульсов на других электродах. Наблюдаются случаи одновременного существования импульсов на нескольких электродах (параллельные импульсы), при этом их амплитуды меньше амплитуд одиночных импульсов, а конфигурация приобретает пилообразную форму. В паузах между импульсами сила тока в электроде вначале падает до нулевою значения, а затем нарастает. Процесс многоэлектродной наплавки в некоторой степени имеет сходство с известным процессом импульсно-дуговой сварки. Отличие состоит в том, что при импульснодуговой сварке оптимальные характеристики и частота импульсов, налагаемые на дежурную дугу, управляемы (запрограммированы). При многоэлектродной наплавке характеристики и частоты импульсов произвольны и лишь в некоторой степени зависят от параметров режима наплавки и технологических факторов. Роль дежурной дуги выполняет шлаковый процесс на электродах, а плавление, формирование и перенос капель происходят во время импульса.
Условия повторных возникновений импульсов при установившемся процессе ^отличаются наличием ванны жидкого шлака и металла, поддерживающих высокую температуру на концах электродов - Повюрный импульс происходит в результате замыкания электрода через жидкий шлак (наиболее распространенный случай}, каплю металла на электроде, без капли на электроде, а также без замыкания путем ионизации газов в промежутке косвенным действием импульса на соседнем электроде.
По нашим представлениям, сам процесс плавления электродов при многоэлектродной наплавке ничем не отличается от плавления одиночного электрода, хирошо изученного и описанного ь литературе. В то же время при многоэлектродном процессе имеет место система плавящихся электродов, поведение которой в этих условиях имеет некоторые особенности. Указанная система может быть настроена так, что в ней будет преобладать одиночное пульсирующее горение электродов с перерывами. В этом случае процесс идет очень неустойчиво. Формирование поверхности наплавленного валика плохое, удельный расход энергии на плавление электродного металла минимальный, производительность невысокая.
Когда в системе преобладает групповое перекрываемое горение электродов, а в отдельные моменты дуги горят на всех электродах, процесс идет устойчиво, обеспечиваются хорошее формирование наплавленного слоя даже на переменном токе, малое проилавление основного металла, повышенный удильный расход электроэнергии на плавление электродного металла,
высокая стабильность металлургических реакций. Способ применим для нанесения слоев толщиной 5 мм и выше, если требуется максимальная производительность наплавки; в сочетании с колебаниями решает многие важные задачи наплавки, особенно поверхностей большой ширины.
Существенное влияние на плавление электродов оказывает Ьл взаимное расположение относительно направления наппавки, например, фронтом, вдоль оси, под углом к оси, под углом, когда ось наплавки является его биссектрисой, и другими способами, показанными на рис. 1. Вдоль фронта электроды можно располагать равномерно и неравномерно, последнее обеспечивает хорошее формирование наплавленного слоя у краев.
Нагрев и плавление электрода можно условно разделить на два вида [24].
Первый — нагрев за счет теплоты дуги пропорционален ее тепловому эквиваленту, т. е.
Я» = Леїw»
где т]э — эффективный КПД процесса нагрева электрода дугой; U — напряжение дуги, В; 1 — сила тока дуги, А.
Второй — нагрев проходящим током в соответствии с законом Джоуля—Ленца.
При шлаковой сварке нагрев электрода имеет много общего с нагревом электрода при дуговой сварке.
Рис. I. Возможные расположения электродов относительно направления наплавки (показано стрелкой):
а — фронтом; б —вдоль оси наплавки; в — под углом к оси наплавки; г — фронтом, когда электроды расставлены неравномерно (у краев сгущены); а —углом с различными расстояниями друг от друга; е — углом на равных расстояниях друг от друга
Однако при шлаковой сварке роль дуги выполняет активная оОна шлаковой ванны, электрод погружен в шлак на значительную глубину, кратную нескольким диаметрам. Нагрев этой части электрода («мокрого вылета») происходит под действием еще дополнительной теплоты, передаваемой электроду шлаковой ванной. Увеличивая вылет электрода до 2и0—220 мм, можно нагреть электродную проволоку на подходе к шлаковой ванне мО температуры 1000 °С. При этом сварочный ток снижается на 20—30%, а скорость сварки растет. Устойчивость электрошлакового процесса при сварке на большом вылете значительно выше, чем на обычном.
Указанные особенности плавления электродов и передачи теплоїы расплавленной ванне в многоэлектродной системе значительно усиливаются благодаря взаимному влиянию плавящихся электродов [25]. Например, при плавлении нескольких электродов под флюсом в импульсном режиме зажигание дуги на очередном электроде упрощается, так как его торец находится в Hat ретом состоянии в результате элек^рошла - кового процесса, протекающего на нем в промежутках между периодами горения дуги [25].
Равномерности тепловложения в ванну способствует импульсное плавление электродов, которое поддерживает высокий суммарный тепловой градиент и способствует лучшему отводу теплоты из отдельных точек ванны в промежутках между дуговыми импульсами.
Вид переноса металла плавящихся электродов в ванну (крупнокапельный, мелкокапельный или струйный) влияет на глубину проплавления. С точки зрения гидродинамики и условий перемешивания ванны предпочтительнее струйный перенос.