ПРОИЗВОДСТВО КИСЛОРОДА ИЗ ВОЗДУХА

Атмосферный воздух представляет собой смесь, содержащую по объёму кислорода 20,93% и азота 78,03%, остальное — аргон и другие газы нулевой группы, углекислота и пр. Указанные цифры относятся к осушенному воздуху без влаги. Содержание водяных паров в воздухе может меняться в широких пределах в зависимости от температуры и степени насыщения. Для получения технически чистого кислорода воздух подвергается глубокому охлаждению и сжижается (температура кипения жидкого воздуха при атмосфер­ном давлении—194,5°). Полученный жидкий воздух подвергается дробной перегонке или ректификации в ректификационных колон­нах. Возможность успешной ректификации основывается на доволь­но значительной' разности (около 13°) в температурах кипения жид­ких азота (—196°) и кислорода (—183°).

Схема заводской установки для производства кислорода из воз­духа показана на фиг. 118. Воздух, засасываемый многоступенча­тым компрессором, проходит сначала через воздушный фильтр, где очищается от пыли, затем проходит последовательно ступени ком­прессора (на фигуре изображён четырёхступенчатый компрессор). За каждой ступенью компрессора давление воздуха возрастает и доводится до 50—220 атм в зависимости от системы установки и стадии производства. После каждой ступени компрессора воздух

Фиг. 118. Схема установки для производства кислорода из воздуха:

кислородный апЬарат; 10 — отвод азота; 11 — отвод кислорода;

і бак для щёлочи; 2 — насос; 3 — декарбонизатор; 4

холодильники с

маслоотделителями; 5 — воздушный фильтр; 5 — 4-ступенчатый компрессор на 220 атм 7 — осушительная батарея; 8 — детандер; 9 12 — газовый счётчик; 13 — танк для жидкого кислорода; 14 — кислородный компрессор; 15 — наполнительная рампа.

проходит злагоотделитель, где осаждается зода, конденсирующаяся при сжатии воздуха, и водяной холодильник, охлаждающий воздух и отнимающий тепло, образующееся при сжатии. Между второй и третьей ступенями компрессора для поглощения углекислоты из воздуха включается аппарат — декарбонизатор, заполняемый вод­ным раствором едкого натра. Сжатый воздух из компрессора про­ходит осушительную батарею из баллонов, заполненных кусковым едким натром, поглощающим влагу и остатки углекислоты. Воз­можно полное удаление влаги и углекислоты из воздуха имеет су­щественное значение, так как замерзающие при низких температу­рах вода и углекислота забивают трубки кислородного аппарата сравнительно малого сечения и заставляют прекращать работу установки, останавливая её на оттаивание и продувку кислородного аппарата.

Пройдя осушительную батарею, сжатый воздух поступает в так называемый кислородный аппарат, где происходит охлаждение и сжижение воздуха и его ректификация с разделением на кислород и азот. Нормальный кислородный аппарат включает две ректифи­кационные колонны, испаритель, теплообменник, дроссельный вен­тиль. Сжатый воздух охлаждается в теплообменнике отходящими из аппарата кислородом и азотом, дополнительно охлаждается в змеевике испарителя, после чего проходит дроссельный вентиль, расширяясь и снижая давление. Вследствие эффекта Джоуля-Том­сона температура воздуха при расширении резко падает и про­исходит его сжижение.

Жидкий воздух испаряется в процессе ректификации, процесс - испарения и отходящие газообразные продукты ректификации ■— азот и кислород — охлаждают новые порции сжатого воздуха, по­ступающего из компрессора, и т. д. Газообразный азот чистотой 96—98% обычно не используется и из теплообменника выпускается в атмосферу. Газообразный кислород чистотой 99,0—99,5% направ­ляется в резиновый газгольдер, откуда засасывается кислородным компрессором и подаётся для наполнения кислородных баллонов под давлением 150 атм.

Установка работает непрерывно круглосуточно до замерзания аппарата или появления каких-либо неисправностей, требующих остановки для ремонта. По замерзании аппарата работа прекра­щается и начинается период отогрева аппарата тёплым воздухом, подаваемым компрессором. По окончании отогрева производятся продувка аппарата, необходимый текущий ремонт, и установка го­това к новому пуску.

Полный производственный цикл установки называется «кампа­нией», нормальная продолжительность которой около 600 час., из них полезной работы с выдачей кислорода 550—560 час. В пуско­вой период, когда требуется интенсивное охлаждение аппарата и скорейшее создание запаса жидкого воздуха, компрессор подаёт воздух под давлением около 200 атм, когда же устанавливается нормальный ход процесса, расход холода уменьшается и рабочее давление компрессора снижается до 50—80 атм. Сказанное отно-

сится к получению из аппарата газообразного кислорода, который уносит с собой немного холода из аппарата, отдавая большую часть холода в испарителе и теплообменнике аппарата. В настоящее вре­мя часто значительная часть кислорода отбирается из аппарата в жидком виде. С жидким кислородом, имеющим температуру —183°, из аппарата уносится много холода, и для возможности нормаль­ной работы установки необходимо усилить охлаждение системы. Это достигается двумя путями: 1) повышением рабочего давления воздушного компрессора; 2) совершением внешней работы при рас­ширении воздуха.

При работе установки для получения жидкого кислорода рабо­чее давление воздушного компрессора поддерживается около 200 атм на протяжении всей кампании, вместо 50-—80 атм, доста­точных для производства газообразного кислорода. При производ­стве жидкого кислорода сжатый воздух из компрессора разделяется на два примерно одинаковых потока, один из которых направляется непосредственно в кислородный аппарат, как было описано выше, другой же предварительно поступает в специальную поршневую машину, так называемую расширительную машину или детандер. В детандере поступающий сжатый воздух расширяется, совершая внешнюю работу, и снижает давление с 200 до 6 атм. Расширение в детандере с совершением внешней работы охлаждает воздух зна­чительно сильнее, чем расширение в дроссельном вентиле кисло­родного аппарата за счёт эффекта Джоуля-Томсона. Воздух охлаж­дается на выходе из детандера примерно до —120° и поступает в кислородный аппарат, смешиваясь с частью воздуха, поступающего в кислородный аппарат помимо детандера. Указанные изменения позволяют непрерывно отбирать жидкий кислород из аппарата без нарушения процесса производства.

1 м3 кислорода при 760 мм рт. ст. и 0° весит 1,43 кг, а при 20° — 1,31 кг.

1 л жидкого кислорода весит 1,13 кг и, испаряясь, образует 0,79 м3 газообразного кислорода при 0° и 760 мм рт. ст. 1 кг жид­кого кислорода занимет объём 0,885 л и, испаряясь, образует 0,70 м3 газообразного кислорода при 0° и 760 мм рт. ст. Техниче­ские данные стандартных кислородных установок, изготовляемых в Советском Союзе, приведены в табл. 15.

Установки на 5 и 30 м3/час изготовляются не только стацио­нарными, но и передвижными.

В последние годы в Советском Союзе академик П. Л. Капица разработал новый процесс производства кислорода из воздуха. От всех существующих этот способ отличается низким рабочим давле­нием сжатого воздуха, всего 6 атм. Сжатие воздуха производится турбокомпрессором, основным производителем холода служит турбо­детандер, предварительное охлаждение воздуха производится в ре­генераторах. Установка даёт жидкий кислород.

По действующему в СССР стандарту технический кислород 1-го сорта для сварки и резки металлов должен иметь степень чистоты не ниже 99%.

Таблица 15

Технические данные кислородных установок, изготовляемых в СССР

Наименование показателей

Кислородные установки

1

II

111

IV

Производительность установки: а) газообразного кислорода в м31час

5

30

130

250

б) жидкого кислорода в кг/час. .

7

30

150

300

Количество воздуха, перерабатывае­мого компрессором (для 20° и 760 мм рт. ст.) в м31час.......................................................

65

180

800

1300

Рабочее давление воздушного ком­прессора в атм: а) для установившегося производ­ства газообразного кислорода.

140

80

60

50

б) в пусковой период и для произ­водства жидкого кислорода. . .

170-200

200

200

200

Мощность приводного мотора ком­прессора в кет............................................................

35

55

280

500

Расход электроэнергии в квт-час: а) на 1 л& газообразного кислорода

3,0

1,70

1,55

1,50

б) на 1 кг жидкого кислорода. . .

3,5

2,0

1,65

1,60

39. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ КИСЛОРОДА

Продольный разрез Наружный boa

баллон.

Производство кислорода из воздуха ведётся непрерывно круг­лосуточно, в малых масштабах оно нерентабельно. Обычно лишь предприятия с большим потреблением кислорода, не менее 400— 500 ж3 в сутки, могут иметь собственные кислородные установки, основная же масса потребителей со средним и малым потреблением кислорода получает его со специальных кислородных заводов. По­этому существенное значение приобре­тает транспорт и хранение кислорода, часто обходящиеся дороже его произ­водства. Кислород обычно хранится и транспортируется в газообразном виде в стальных баллонах под давлением 150 атм.

Кислородный баллон (фиг. 119) представляет собой цилиндр со сфериче­ским днищем и горловиной для крепле­ния запорного вентиля. На нижнюю часть баллона насаживается башмак, позволяющий ставить баллон верти­кально. На горловину насаживается кольцо с резьбой для навёртывания защитного колпака. Горловина имеет

внутреннюю коническую резьбу для ввёртывания вентиля. По ГОСТ баллоны изготовляются из стальных цельнотянутых труб углероди­стой стали с пределом прочности не ниже 65 кг/мм2, пределом теку­чести не ниже 38 кг! мм2 и относительным удлинением не ниже 12%. Кислородные баллоны изготовляются для разных целей ёмкостью от 0,4 до 50 л. В сварочной технике применяются главным образом бал­лоны ёмкостью 40 л. Такой баллон имеет наружный диаметр 219 мм, длину корпуса 1390,лш, толщину стенки 8 мм; весит баллон без кисло­рода около 67 кг.

Баллоны из углеродистой стали для рабочего давление 150 атм имеют вес тары 1,6—1,7 кг/л ёмкости. В последнее время начато освоение баллонов из легированных сталей с пределом прочности 100—120 кг/мм2, что даёт возможность повысить рабочее давление баллонов и снизить их вес в 2—2,5 раза для той же ёмкости и ра­бочего давления. Чтобы избежать опасных ошибок при наполнении и использовании, баллоны для разных газов окрашиваются в раз­личные цвета, кроме того, присоединительный штуцер запорного вентиля имеет различные размеры и устройство. Кислородные бал­лоны окрашиваются снаружи в голубой цвет и имеют надпись чёр­ными буквами кислород. Через каждые пять лет кислородный бал­лон подвергается обязательному испытанию в присутствии инспек­тора Котлонадзора, что отмечается клеймом, насекаемым на верх­ней сферической части баллона. Производится также гидравличе­ское испытание на полуторное рабочее давление, т. е. на 225 атм. Вентиль кислородного баллона изготовляется из латуни. Присоеди­нительный штуцер вентиля имеет правую трубную резьбу Во время хранения вентиль защищается предохранительным колпаком, который навёртывается на наружное кольцо горловины баллона. Баллон, заполненный кислородом под давлением 150 атм, при на­рушении правил обращения с ним может дать взрыв значительной разрушительной силы. Поэтому при обращении с кислородными баллонами необходимо строго соблюдать установленные правила безопасности. В особо ответственные или опасные цехи рекомен­дуется вообще не вносить кислородных баллонов, а располагать их вне цеха в отдельной пристройке, и подавать в цех по трубо­проводу редуцированный кислород пониженного давления, обычно 10 атм.

Простейшая пристройка в форме железного шкафа у наружной стены цеха показана на фиг. 120. Обычно в цехе не должно нахо­диться одновременно более 10 баллонов. В цехе баллоны должны прикрепляться хомутом или цепью к стене, колонне, стойке и т. п. для устранения возможности падения. На территории завода бал­лоны нужно переносить на носилках или лучше перевозить на спе­циальных тележках; переносить баллоны на руках или на плечах запрещается. При перевозке баллонов на автомашинах или подво­дах необходимо обязательно применять деревянные подкладки, устраняющие перекатывание и соударения баллонов. Погрузка и выгрузка баллонов должны производиться осторожно, без толчков и ударов. Баллоны необходимо защищать от нагревания, например

от печей, вызывающего опасное повышение давления газа в бал­лонах. При работах летом на открытом воздухе в солнечную пого­ду следует прикрывать кислородные баллоны мокрым брезентом. Нельзя допускать загрязнения баллона, в особенности его вен­тиля, маслами и жирами, кото­рые самовозгораются в кислоро­де, что может привести к взрыву баллона. Баллоны с кислородом должны храниться в специально отведенных отдельных складах.

Транспортирование газообраз­ного кислорода в баллонах об­ходится дорого, иногда дороже стоимости самого кислорода.

Нормальный баллон ёмкостью 40 л, весящий около 67 кг, вме­щает 4x150 = 6000 л = 6 м3 ки­слорода, весящего всего 6х 1,3=

= 7,8 кг, так что на вес полезно - го груза 7,8 кг приходится пере-

возить тару 67 кг, т е. вес тары ФнГ ш пристройка для кислород-

составляет почти 90%, а полез - ных баллонов,

ный груз—10%. Если учесть

ещё содержание, ремонт и амортизацию баллонов, то часто стои­мость кислорода на месте у потребителя в два-гри раза превышает отпускную его стоимость на кислородном заводе. Поэтому значи­тельный экономический интерес представляет доставка кислорода с кислородного завода потребителям в жидком виде, при котором вес тары составляет около 50% общего веса груза, и при том же весе перевозимого груза доставляется жидкого кислорода в пять раз больше, чем при перевозке его в газообразном виде.

Для возможности пользования жидким кислородом необходимы:

1) транспортный танк для перевозки жидкого кислорода, установ­ленный на автомашине, обычно принадлежащий кислородному за­воду; 2) газификатор, служащий для превращения жидкого кисло­рода в газообразный и устанавливаемый обычно у потребителя кислорода.

Транспортный танк для перевозки жидкого кислорода в основ­ном представляет собой шар из листовой латуни, заключённый в стальной кожух; пространство между шаром и кожухом запол­нено теплоизоляционным материалом — порошкообразной угле­кислой магнезией. Жидкий кислород заливается в танк через приёмно-спускной вентиль, заполняет латунный шар, а забирается из него через гибкий шланг, присоединённый к вентилю. Так как окружающая температура воздуха всегда выше его критической температуры, то жидкий кислород неизбежно испаряется, т. е. про­исходит непрерывная потеря кислорода в окружающую атмосферу вследствие испарения. При хорошем состоянии теплоизоляции танка
эта потеря может быть сведена до 0,3% в час. На случай повыше­ния давления танк снабжён предохранительным клапаном.

Потребители жидкого кислорода должны иметь газификаторы. Кислородные газификаторы разделяются на стационарные и пере­носные, а также на: а) низкого давления или холодные, подающие кислород в распределительную трубопроводную сеть при давлении до 15 атм, и б) высокого давления или тёплые, дающие кислород, для наполнения баллонов под давлением 150—165 атм.

Наиболее распространён на наших заводах стандартный стацио­нарный холодный газификатор ёмкостью 1000 л жидкого или 800 м3' газообразного кислорода. Газификатор устанавливается в отдельном помещении. Установка рассчитана на рабочее давление до 15 атм и состоит из газификатора, испарителя н реципиента. Газификатор' состоит из толстостенного стального шара, внутри которого поме­щается тонкостенный латунный шар для жидкого кислорода. Шар - газификатора находится в кожухе; пространство между кожу­хом и шаром заполняют магнезией, как в кислородных танках. На­полняется газификатор жидким кислородом из транспортного танка через вентиль и гибкий шланг. Из газификатора жидкий кислород поступает в змеевик испарителя и оттуда газообразный кислород направляется в сеть кислородных трубопроводов. Для вырав­нивания колебаний давления приключается рессивер ёмкостью - около 10 м3.

Комментарии закрыты.