ЗАТЕКАНИЕ ПРИПОЯ В ЗАЗОР
Затекание жидкого припоя в зазор при неизотермических условиях контакта начинается сразу же после его расплавления и смачивания соединяемых деталей у входа в зазор и может быть закончено до того, как будет достигнута заданная температура пайки (например, в печи). Только после смачивания соединяемых деталей в зазоре образуется симметричный мениск жидкого припоя с постоянным контактным углом. Различные по массе, размерам и физическим свойствам материала детали даже в печи нагреваются неодновременно, что усиливает неизотермич - ность условий нагрева.
На поверхности паяемого металла, очищенного перед пайкой от оксидов, при последующем нагреве и недостаточной активно
сти флюсов могут снова возникать окисленные участки, не смачиваемые припоем.
Такие участки тормозят процесс затекания припоя. Вблизи выхода припоя из зазора контактный угол смачивания увеличивается, что обусловлено, по-видимому, снижением капиллярного давления при выходе жидкой фазы из зазора. На этой стадии затекания в условиях расширяющегося зазора и резкого снижения капиллярного давления формируется галтельный участок паяного соединения. С понижением температуры пайки длительность заполнения зазора и углы смачивания и2 и щ возрастают.
При изотермическом контакте припоя и паяемого металла общий характер изменения контактного угла смачивания при затекании припоя в зазор сохраняется, но длительность его заполнения по сравнению с неизотермическими условиями сокращается почти на порядок, а величина углов смачивания и2 и щ уменьшается. При изотермическом контакте в температурном интервале активности флюса непропаи не образуются.
Галтельные участки швов — весьма ответственные участки, так как они подвергаются действию повышенных нагрузок при статических и динамических нагружениях. ОДнако наличие чрезмерно развитых галтельных участков приводит к дополнительному расходу припоев, увеличению массы изделия, а вследствие большого объема жидкого металла в галтельных участках могут получить усиленное развитие локальная химическая эрозия прилегаемого паяемого материала, усадочная и газовая пористость, скопление хрупких структурных составляющих. При большом отношении объема припоя к объему капиллярного зазора (^500 %) и невысокой смачивающей способности припоя галтельный участок может потерять свою плавность и стать выпуклым [15]. Слишком сильно растекающийся припой может, заполнив зазор, вслед за этим вытечь из него в результате интенсивного растекания по нижней детали. Типичным примером этого является медь. Чтобы избежать вытекания припоя из зазоров, изделие собирают с нулевыми зазорами или с нулевым натягом, что усложняет процесс сборки.
При заполнении жидким припоем неравномерного зазора шириной 0—0,5 мм со стороны узкой его части характер заполнения остается таким же, как и при равномерном капиллярном зазоре. Однако продолжительность такого заполнения в 2 раза сокращается, а коэффициент пористости становится ниже, чем при заполнении зазора от широкой его части.
На высоту подъема жидкого припоя в вертикальном капиллярном зазоре при изотермическом контакте с паяемым металлом решающее влияние оказывают ширина зазора и смачивающая способность припоя: с уменьшением ширины зазора и улучшением смачиваемости припоя высота его подъема в зазоре возрастает. При прочих равных условиях максимальная высота подъема припоя в зазоре тем больше, чем меньше плотность припоя.
Сравнение кинетики заполнения вертикального зазора жидким припоем в различных условиях температурного контакта Мк и Л4П показало, что при неизотермическом контакте и увеличении ширины зазора заметно возрастает контактный угол смачивания о. Применение менее активных флюсов также приводит к увеличению этого угла и снижению высоты подъема припоя.
Затекание припоя в вертикальные зазоры сверху, без технологической стенки, возможно только при использовании припоев, активно взаимодействующих с паяемым металлом. Технологическая стенка при затекании припоя в вертикальный зазор сверху оказывается необходимой лишь для слабо взаимодействующих с паяемым металлом припоев.
Заполнение вертикальных или наклонных капиллярных зазоров на большую высоту, чем это обеспечивается действием капиллярных сил, возможно под действием внешне приложенных сил: разреженного давления в герметизированных зазорах, давления на поверхность жидкого припоя при пайке погружением в ванну, при действии электромагнитных сил и др.
Процесс заполнения капиллярного зазора под действием электромагнитных сил происходит в три стадии. На первой стадии возрастает мгновенная скорость затекания. На второй стадии происходит резкое уменьшение контактных углов смачивания и изменение мениска с выпуклого на вогнутый. При этом мгновенная скорость заполнения зазора резко снижается, хотя и остается отличной от нуля. На третьей стадии повторно увеличивается мгновенная скорость, но до значительно меньшей величины, чем на первой стадии. Максимальное значение мгновенной скорости заполнения при этом тем больше, чем больше величина электромагнитного давления. Значение скорости заполнения капиллярного зазора под действием электромагнитных сил на порядок больше, чем при капиллярном его заполнении, и может регулироваться величиной электромагнитного давления.
При телескопическом типе соединения сборочный зазор между деталями из одинакового материала равен бо == (Do — do)/2 и может изменяться лишь при неравномерном нагреве. Если температурный коэффициент линейного расширения соединяемых материалов не зависит от температуры и если наружная деталь будет нагреваться быстрее внутренней, то диаметр наружной детали Dt = D0(1 +a. ot) тогда диаметр внутренней детали будет d(2 = d()( - fao^). При условии, что t> t2, зазор между деталями (Dt—dv?) /2 будет возрастать, а если t<t2f т. е. внутренняя деталь будет нагреваться быстрее, то зазор между соединяемыми деталями будет уменьшаться. По мере выравнивания температуры соединяемых деталей, когда температура их выровняется t=t2, зазор между деталями станет равным сборочному.
При пайке разнородных материалов в условиях равномерного нагрева зависимость диаметров dt и D, деталей от температуры будет иметь следующий вид: d, = do(l +at), Dt — Do(l +a2i), где осі и а2— температурные коэффициенты линейного расширения внутренней и наружной деталей соответственно. Тогда ширина зазора между ними
_ Dt — dt Do{--<X2t)—do(-}-<xt) Do — do ( (D0OC2— doa)
,= _ = 2 = 2 1 2 =
, {D0a2 — d0a)
2 (18)
Уравнение (18) может быть упрощено, так как D() мало отличается от do. Если положить, что D0~ do~ D, то зависимость ширины зазора между деталями из разнородных материалов от температуры будет иметь следующий вид:
haia2 = 6o+ (а2 — °и) • (19)
Если c*i> а2, то при нагреве зазор между деталями 6а, а-’ будет уменьшаться, а при аіСаг—возрастать.
При определенной температуре происходит пережим деталей (при Gti> а2) и зазор перестает существовать. Температура, при которой зазор исчезает при нагреве, определяется по уравнению (19) при условии, что 6?'а2=0:
(а2 — он) D
Например, если внутренняя деталь изготовлена из аустенитной стали, а наружная из ферритной при ширине сборочного зазора между ними 0,05 мм и разнице а2 — oti =4-10-6 °С-1 при температуре 500 °С паяльный зазор исчезает. В этих условиях жидкий припой с температурой плавления 500 °С в зазор не затечет. Кроме того, в результате обжима в деталях могут произойти значительная пластическая деформация и последующий процесс рекристаллизации. Если зазор исчезает при температуре ниже температуры рекристаллизации, то в контакте пластически деформированного материала с жидким припоем может развиваться хрупкое разрушение.
В паяных соединениях телескопического типа, в которых наружный (охватывающий) элемент изготовлен из материала с более высоким температурным коэффициентом линейного расширения, ширина зазора при пайке возрастает по сравнению с шириной сборочного зазора, а при охлаждении — уменьшается. При этом паяный шов подвергается сжатию, под действием которого он может упрочняться. Сжатие препятствует также возникновению и развитию микротрещин в шве при циклических изменениях температуры, что обеспечивает надежную работу трубопроводов в условиях теплосмен и тепловых ударов. Это подтверждено при пайке трубопроводов из алюминиевых и медных труб, в которых наружная алюминиевая труба была покрыта слоем никеля, нанесенного химическим способом, а внутренняя медная труба припаивалась к ней легкоплавкими припоями.
Для активирования заполнения зазора припоем при бесфлюсо - вой пайке иногда используют его подвод через металлическую губку. По данным Г. А. Яковлева, низкотемпературная пайка металлов: меди, никеля, молибдена, алюминия и других, а также полупроводников (кремния, германия) припоями на основе свинца и олова в водороде возможна с применением никелевой ленты (губки) толщиной 140 мкм, катаной и спеченной из карбонильных порошков с пористостью 75 % и линейным размером капилляров 3 — 10 мкм. Ленту предварительно укладывают в зазор, а на ее свободный выступ припой. Паяемые материалы обезжиривают и травят (химически): пайку проводят в пружинных кассетах, обеспечивающих прижим соединяемых деталей под давлением от 0,5 до 5 МПа. При впитывании в металлическую губку жидкий припой, по-видимому, очищается от кислорода и распространяется по губке, достигая поверхности паяемого материала. Полное смачивание соединяемых деталей меди свинцом при использовании медной губки происходит при температуре 420 °С, а при никелевой губке — при температуре 330 °С. При смачивании свинцом на поверхности меди образуется прослойка твердого раствора никеля. Губка положительно влияет на смачивание меди и снижает температуру пайки, если она изготовлена из металла, образующего с медью непрерывный ряд твердых растворов.
Эксперименты по пайке в космосе показали, что в условиях микрогравитации никаких изменений в металле на атомном уровне (диффузия, поверхностное натяжение, химическая реакция) не происходит. Изменения проявляются на макроскопическом уровне (массо - и теплоперенос, механизмы роста кристаллов и т. п.).
В условиях невесомости (летающая космическая лаборатория) установлено, что в противоположность наземным условиям зазоры стыков заполняются жидким припоем равномерно, без провисания: смачивание паяемого материала жидким припоем и растекание последнего по основному материалу происходит под действием капиллярных сил и межатомных сил сцепления: диспергирующие частицы основного материала в расплаве припоя распределяются равномерно, по объему и в шве отмечается склонность к мелкозернистому строению: возможно получение пайкой качественных стыковых, нахлесточных соединений и скруток проводников, проведение ремонта отверстий путем припайки заплат [13]. Пайка в космосе отличается от пайки на земле отсутствием удельного веса у припоя из-за ничтожно малого ускорения, отсутствия конвекции в шве из-за очень низкого остаточного давления: стремления жидкого припоя к сферической форме.
Источником теплоты при пайке в космосе является солнечная энергия (мощность 1,7—2 кВт). На высоте 100 км остаточное давление в окружающем пространстве 1,33(10“4 — 10“5) Па. В паяных швах отсутствуют гелий, водород, атомарный азот и кислород. Радиус галтельного участка паяного шва уменьшается: припой принимает форму капли с приплюснутой вершиной. Пайка в космосе требует минимальных зазоров. В паяных соединениях наблюдается меньше дефектов, связанных с усадкой сплавов: швы менее окислены.
Комментарии закрыты.