Особенности поведения полимеров в разных физических состояниях
В стеклообразном состоянии (малые напряжения) наблюдается только упругая деформация еупр с высоким модулем упругости (£ = 2,2-103—5- 1Q3 МПа). Такая деформация связана с изменением средних межатомных и межмолекулярных расстояний в полимере, а также с деформацией валентных углов макромолекул. Выше температуры стеклования к этой деформации добавляется высокоэластическая составляющая еВэл, которая превосходит упругую составляющую в тысячи раз и характеризуется модулем высокоэластичности £вэл = 0,1 — 1 МПа. Выше температуры текучести проявляется
еще одна составляющая деформации — вязкая еВяз, которая приводит к постепенному накоплению остаточной деформации образца. В общем случае можно записать, что деформация полимера состоит из трех частей: е = еуПр + еВэл + еВяз‘, они играют различную роль при низких и высоких температурах.
Если линейный полимер находится в кристаллическом состоянии, то ниже температуры плавления Гпл (или кристаллизации Тк) он будет твердым, обладая при этом различной жесткостью ниже и выше температуры стеклования Тс (кривая типа 3 на рис. 1.15). Это связано с тем, что некристаллическая (аморфная) часть полимера ниже Тс находится в стеклообразном, а выше — в высокоэластическом состоянии. В тех случаях, когда полимер слабо закристаллизован, выше Тс он ведет себя в отношении деформационных свойств как некристаллический полимер или как эластомер повышенной жесткости.
При температуре Тия кристаллическая часть полимера плавится и термомеханическая кривая почти скачкообразно достигает высокоэластического плато кривой 1У характерной для некристаллического полимера.
Наконец, если некристаллический полимер является сеточным (или пространственно-сшитым) эластомером, то он характеризуется термомеханической кривой типа 2. Узлы пространственной сетки препятствуют относительному перемещению полимерных цепей. Поэтому при высоких температурах вязкое течение не наступает и эластомер «не замечает» температуры Гф. т. Температурная область высокой эластичности расширяется, и ее верхней границей становится граница химического разложения полимера. Такими деформационными свойствами обладают и сеточные полимерные материалы типа резин, которые необычны по сочетанию ряда свойств. Они способны восстанавливать свою форму после разгрузки, как и упругие твердые тела, но по другим свойствам близки к жидкостям и газам. Так, низкомолекулярные жидкости и резины по структуре — некристаллические тела. Их коэффициенты теплового расширения и сжимаемости близки между собой, но намного больше (на один-два порядка), чем у низкомолекулярных твердых тел. Коэффициенты их объемного термического расширения равны 3,6 • 10“3 К-1 для газов, (3-У5) • 10~5 К-1 для металлов, а для жидкостей и резины они имеют промежуточные значения и практически совпадают между собой и близки к (34-6) -10~4 К-1. Коэффициенты сжимаемости равны 10 МПа-1 для воздуха при давлении 0,1 МПа (1 атм), 10~5 Па-1 для металлов, а для жидкостей и резин они близки и на два десятичных порядка отличаются от металлов (10“3 МПа-1).
Резины, как и жидкости, подчиняются закону Паскаля. Природа высокоэластической деформации полимеров отличается от природы деформации твердых тел, но аналогична молекулярно-кинетической (энтропийной) природе упругости газов. Например, равновесное напряжение в деформированной резине, как и давление сжатого газа, при заданном объеме пропорционально абсолютной температуре. Такое сочетание в высокоэластических полимерах физических свойств трех агрегатных состояний является уникальным.
Многие исследователи считают, что структура полимера в растворе и блоке близка к модели хаотически переплетенных цепей и только при кристаллизации образуются упорядоченные области в виде кристаллитов. Этим объясняется, что структура полимеров в кристаллическом состоянии изучена лучше. Кроме того, прямые структурные методы (рентгенографические, электронно-графические и др.) дают наилучшие результаты при исследовании области когерентного рассеяния, т. е. для кристаллических структур с дальним порядком в расположении атомов, атомных групп и цепей.
Структура полимеров в некристаллическом состоянии, в частности эластомеров, менее изучена, так как прямые структурные методы в этом случае не столь эффективны, а косвенные методы, позволяющие судить о структуре полимеров, только развиваются. Относящиеся к последним методы релаксационной спектрометрии позволяют по характеру теплового движения отдельных структурных единиц получать представления об их размерах и прочности связи в полимере.
Все ценные физические свойства полимеров, определяющие их широкое применение в технике, обусловлены особенностями строения их макромолекул и надмолекулярных структур.
Полимерные цепи состоят из звеньев, которые благодаря наличию между ними простых углерод-углеродных или других химических связей способны к внутримолекулярному вращению, что приводит к набору различных конформаций. Важнейшим физическим свойством длинных цепных макромолекул является их гибкость, благодаря которой проявляется высокая эластичность полимеров.
Возможность упорядочения макромолекул, проявляющегося благодаря межмолекулярному взаимодействию и тепловому движению отрезков цепей (сегментов), определяет наличие у полимеров разных классов надсегментальных и надмолекулярных образований, представляющих собой структуры с различной степенью дефектности. Эти надмолекулярные структуры определяют важнейшие механические свойства и кристаллических, и некристаллических полимеров, в частности их деформационные и прочностные свойства.
Полимеры могут находиться в двух агрегатных состояниях (жидком и твердом), двух фазовых состояниях (аморфном и кристаллическом) и трех релаксационных (или деформационных) физических состояниях (стеклообразном, высокоэластическом и вязкотекучем). Границы между этими физическими состояниями обычно характеризуют значениями температур стеклования Тс и текучести Тт.