Микромеханика разрушения полимерных волокон
Наиболее детально развитие разрушения изучено прямыми структурными методами в твердых полимерах и главным образом в волокнах (инфракрасная спектроскопия, электронный парамагнитный резонанс, масс-спектрометрия, ядерный магнитный резонанс, рентгеновская дифракция на малые и большие углы, дифракция видимого света, электронная микроскопия, оптическая и электронно-микроскопическая фрактография и др.) [61; 11.27].
Силовое возмущение межатомных связей в нагруженном полимере проявляется в изменении спектра поглощения в ИК-области, где лежат частоты колебаний связей в полимерных цепях. Полосы ИК-поглошения под действием напряжения смещаются в сторону низких частот и деформируются, размываясь в ту же сторону. Разгрузка полимера приводит к восстановлению исходного вида полос поглощения. Растяжение межатомных связей вызывает уменьшение энергии связи, и как следствие этого, некоторое уменьшение частоты колебаний. Большая часть связей (80—90%) нагружается сравнительно слабо, о чем свидетельствует небольшое смещение полосы поглощения. Малая часть связей нагружается значительно сильнее. Максимальные перенапряжения наиболее нагруженных связей (несколько процентов) достигают значений порядка десятков (р0—10). Наличие таких перенапряженных связей играет решающую роль в разрушении полимера, так как вначале именно они будут разрываться под действием флуктуаций, что приводит к появлению зародышей разрушения.
Структурная неоднородность полимеров (кристаллиты, фибриллы, сферолиты, глобулы, пачки, различные другие микрообласти упорядоченной структуры и т. д.) и различные дефекты (исходные микротрещикы, включая следы предыдущих воздействий, дефекты кристаллических областей и др.) являются причинами неравномерности распределения нагрузок по объему тел.
Из-за разрыва химической связи возникают ненасыщенные валентности в виде свободных радикалов, которые при низких температурах не вступают в химические реакции. Наличие в свободном радикале неспаренных электронов позволяет применять метод ЭПР.
Обнаружено, что в нагруженных полимерах задолго до разрушения образцов происходят разрывы отдельных химических связей. Сведения о разрывах химических связей получены методом масс - спектрометрии при изучении летучих продуктов, образующихся в ряде случаев при реакциях радикалов. В результате механическое разрушение полимеров можно рассматривать как термическую деструкцию, активированную напряжением. Энергия активации разрушения совпадает с энергией активации термодеструкции на ее начальной стадии. Кинетика накопления разрывов, в частности, экспоненциальная зависимость скорости накопления радикалов от напряжения, является подтверждением термофлуктуационной природы распада напряженных молекул. *
Возникновение субмикроскопических разрывов сплошности наблюдалось методами рентгеновской дифракции в малых углах и при рассеянии света. С помощью обоих методов можно обнаружить неоднородности, в том числе субмикротрещины с размерами от 1 до 102—103 нм, определить их размеры, форму, ориентацию и концентрацию. В нагруженных полимерах резко возрастает интенсивность рассеяния рентгеновских лучей и света в результате появления мельчайших трещин, которые имеют дископодобную форму и расположены перпендикулярно оси нагружения. Их размеры— нанометры в продольном и десятки нанометров в поперечном направлении, а их концентрация в поперечном сечении достигает значений 1016—1021 м~2. Такие субмикротрещины возникают только под нагрузкой. Снятие нагрузки не приводит к их «залечиванию».
После образования зародышевых субмикроскопических трещин дальнейшее развитие разрушения в кристаллических' ориентированных полимерах приводит к слиянию этих трещин и образованию за счет этого более крупных магистральных трещин, завершающих разрушение. Трещины субмикроскопических размеров 1—10 нм наиболее отчетливо наблюдаются у кристаллических ориентированных полимеров, например у полимерных волокон, тогда как трещины следующего уровня — микроскопических размеров (от единиц до десятков микрометров) ■—наиболее характерны для аморфных неориентированных полимеров (ПММА, ПС и т. п.), где с течением времени на поверхности нагруженных образцов возникает огромное число микротрещин, которые могут быть трещинами «серебра». Изучение кинетики трещинообразования показало, что оно является затухающим во времени процессом, как и накопление разорванных связей или субмикротрещин.
В отдельных местах полимера в результате слияния микротре - щип появляются макротрещины, которые растут ускоренно. Закономерности роста таких магистральных, макроскопических трещин наиболее обстоятельно изучены на полимерах. Исследования кинетики сквозных магистральных трещин проводились на тонких пленках из полимеров (производные целлюлозы), где время роста магистральной трещины составляло большую часть долговечности полимера. Развитие магистральной трещины является ускоренным (отсутствие затухания скорости роста по сравнению с субмикро - и микротрещинами). Было получено обшее уравнение для скорости роста сквозной трещины вида (11.11). При этом энергия активации роста трещины совпадала с энергией активации в уравнении долговечности.
Изучение магистральных трещин интересно тем, что именно в районе вершины такой трещины и развертываются те явления, которые определяют долговечность всего тела. По закономерностям роста магистральной трещины и по особенностям рельефа поверхности разрыва образца (фрактография) можно установить наличие начального локального разрыва и оценить его размеры. Кроме того, изучение магистральных трещин позволяет конкретизировать роль субмикро - и микротрещин в процессе разрушения путем исследования этих «мелких» трещин в области вершины растущей микротрещины или же их «следов» на поверхности разрыва тела. Иногда обнаруживается повышенная концентрация субмикротрещин перед растущей магистральной трещиной, так что макротрещина продвигается уже через насыщенную разрывами зону полимера. Рост же магистральной трещины в процессе слияния ее с вырастающими ей навстречу микротрещинами сопровождается появлением характерных следов на поверхности образца — гипербол, анализируя которые можно найти скорости роста трещин, их относительную «опасность», размеры и т. д.