История развития оптоэлектроники
Оптика является одной из древнейших наук. Освоение оптического излучения можно подразделить на два больших исторических этапа [4,22].
Первый этап связан в основном с изучением наблюдаемых непосредственно глазом свойств видимого света и соответствует развитию классической оптики.
Эволюция взглядов на природу света иллюстрирует диалектический характер познания. Великие мыслители древности считали, что световые лучи исходят из глаз (Платон). На основе учения о зрительных лучах, исходящих из глаз, Эвклид, Птоломей и другие создали теорию отражения света от плоских и сферических зеркал и положили начало геометрической оптике. Теории зрительных лучей в древности противопоставлялась еще более фантастическая теория Эпикура и Лукреция о «слепках» с предметов, летящих во всех направлениях и попадающих в глаз. Затем появилась корпускулярная концепция, или теория истечения, поддерживаемая вначале Декартом, а затем Ньютоном. Согласно этой теории, свет представляет собой совокупность мельчайших частиц-корпускул, движущихся вдоль определенной траектории — светового луча. Этой теорией наглядно и естественно объяснялись такие явления, как прямолинейность распространения света в однородных средах, отражение света от поверхности зеркал, преломление светового луча на границе двух сред, а также его искривление при распространении света в неоднородных средах. Одновременно X. Гюйгенсом была предложена интерпретация тех же явлений на основе понятий световой волны и волновой поверхности, согласно которой свет представляет собой волны, распро
страняющиеся в пространстве. Лучи света представляют собой чисто абстрактное понятие и определяются как кривые, ортогональные волновым поверхностям.
Главным доводом Ньютона против волновой теории было отсутствие вещественной среды («эфира») в мировом пространстве. Явления, связанные с периодичностью (кольца Ньютона), в корпускулярной теории объяснялись тем, что частицы вращаются. Пространство, пробегаемое такой частицей за один оборот, сопоставлялось с некоей «длиной волны». Полярность (в современной терминологии — поляризацию) Ньютон считал свойством только твердых частиц. Огибание, дифракцию он пытался истолковать «отталкивательным» и «притягательным» действиями вещества на световые корпускулы. Вслед за Ньютоном в XVIII в. большинство ученых стали склоняться к корпускулярной теории, и волновая теория, блестяще развитая Гюйгенсом, сохранила лишь немногих последователей.
Только на рубеже XVIII-XIX вв. англичанином Т. Юнгом были начаты серьезные исследования интерференции и дифракции, а французом О. Френелем дано их полное теоретическое объяснение на основе волновой теории Гюйгенса. Кроме того, Френель показал, что представления о волновой природе не противоречат факту прямолинейности распространения света в однородной среде. Качественной и количественной точностью своих предсказаний волновая теория в первой половине XIX в. победила теорию истечения. К концу XIX в. Максвелл дал волнам Френеля электромагнитную интерпретацию и показал, что всякая световая волна является электромагнитным возмущением особого рода. Опыты Г. Герца и A. C. Попова экспериментально подтвердили это.
Электромагнитная теория, обобщенная в виде системы дифференциальных уравнений Максвелла, явилась вершиной первого «классического» этапа развития оптики и наших представлений о природе света.
Второй этап тесно связан с теми революционными преобразованиями, которые претерпела физика в начале XX в. Характерно, что именно изучение оптических спектров поглощения и испускания привело к необходимости введения понятий о квантовых скачках и кванте действия А как минимальном действии, которые ввел в 1900 г. М. Планк для объяснения спектра излучения черного тела. Впоследствии постоянная h, имеющая размерность «действия» [Дж с], была названа постоянной Планка. В 1905 г. А. Эйнштейн на основе теории Планка возродил в новой форме корпускулярную теорию света, предположив, что планковские кванты энергии Е = hv существуют в виде реальных частиц, названных им световыми квантами, или фотонами. Таким образом, Эйнштейну удалось объяснить открытый ранее фотоэффект. Применив эти понятия к атому, Нильс Бор в 1913 г. объяснил простую связь частоты излучения v с разницей энергий между уровнями Е„ и Ет
(1.1)
Фундаментальную роль для последующего развития квантовой электроники сыграла работа А. Эйнштейна (1917 г.), в которой он на основании рассмотрения термодинамического равновесия системы молекул ввел понятие об индуцированном излучении. На возможность использования индуцированного излучения для наблюдения отрицательного поглощения (усиления) впервые указал в 1940 г. В. А. Фабрикант.
В 1954 г. советские ученые Н. Г. Басов и А. М. Прохоров разработали конкретный проект, а американский физик Ч. Таунс создал действующий мазер на пучке молекул аммиака. Это был первый прибор, работавший на квантовых принципах, в основе которого лежало явление усиления электромагнитных колебаний с помощью индуцированного излучения. За эти работы Басову и Прохорову была присуждена Ленинская премия, а затем совместно
с Ч. Таунсом — Нобелевская премия. Таким образом, 1954 г. может быть назван годом рождения квантовой электроники как самостоятельной науки.
Методы, развитые первоначально в радиодиапазоне (первый аммиачный мазер работал на длине волны 1,25 см), затем были перенесены в оптический диапазон, и в 1960 г. был создан рубиновый лазер, а в 1961 г. — газовый лазер на смеси гелия и неона. Наука и техника впервые получили в свое распоряжение когерентный источник световых волн. Это дало толчок развитию таких новых областей науки, как нелинейная оптика, топография и др. Основополагающие работы по голографии были выполнены Д. Габором и Ю. Н. Денисюком.
Параллельно с развитием квантовой радиофизики и квантовой электроники быстрыми темпами развивалась физика полупроводников и полупроводниковая электроника. Успехи в этих областях привели к созданию эффективных полупроводниковых фотоприемников и генераторов света, т. е. приборов, составляющих фундамент полупроводниковой оптоэлектроники. К главным вехам в развитии данной отрасли относятся следующие. В 1873 г. В. Смит обнаружил в слоях селена фотопроводимость, т. е. изменение сопротивления под действием освещения, открыв тем самым внутренний фотоэффект. Внешний фотоэффект был открыта 1888 г. А. Г. Столетовым. В 1923 г. О. В. Лосев наблюдал свечение кристаллов карборунда (карбида кремния) под действием электрического тока и дал правильное объяснение этому явлению, которое легло в основу действия современных электролюминесцентных источников света.
В 1960 г. в физическом институте АН СССР в Москве был рассмотрен принцип работы полупроводникового инжекционного лазера, а в 1962 г. в физико-техническом институте АН СССР в Ленинграде было обнаружено эффективное рекомбинационное излучение и наблюдалось вынужденное излучение в кристаллах арсенида галлия. Параллельно в физико - техническом институте Ж. И. Алферовым с сотрудниками успешно проводились работы по получению гетеропереходов и созданию на их базе эффективных приемников и источников света. В 1968-1970 гг. ими были созданы низкопороговые полупроводниковые лазеры, в том числе работающие в непрерывном режиме при комнатной температуре. Важным моментом в развитии оптической электроники явилось получение оптических волокон с низкими потерями (менее 1 дБ/км), что обеспечило возможность их применения в качестве эффективных оптических волноводов. Разработка эффективных полупроводниковых лазеров, работающих в непрерывном режиме, и создание оптических волокон с малыми потерями привели к рождению и быстрому развитию новой системы передачи информации через волоконно-оптические линии связи (BOJIC) и созданию волоконно-оптичеческих систем передачи (ВОСП).
Рассматривая историю, можно выделить пять поколений ВОСП.
ВОСП первого поколения (1977-1980 гг.) использовали диапазон длин волн 0,8.. .0,9 мкм и позволяли обрабатывать цифровые потоки со скоростью 45 Мбит/с.
ВОСП второго поколения (1980-1983 гг.) в качестве рабочей использовали длину волны 1,31 мкм, а скорость обработки цифровых потоков составляла 500 Мбит/с.
Системы передач третьего поколения (1983-1990 гг.) исследовали в качестве излучателей лазеры, у которых длина волны составляла 1,31 и 1,55 мкм, а скорость обработки цифровых потоков — 2 Гбит/с.
С 1989 по 1994 г. активно проводились разработки ВОСП четвертого поколения. Они работали на длине волны 1,55 мкм, скорость обработки цифровых потоков составляла 10 Гбит/с. В состав ВОСП четвертого поколения входят волоконно-оптические усилители.
С 1994 г. создаются широкополосные ВОСП пятого поколения. Рабочие длины волн находятся в диапазоне 1,53... 1,61 мкм. Системы используют спектральное уплотнение и несколько источников света. Предусматривается объединение каналов со скоростями обработки цифровых потоков 10 Гбит/с. В многоканальных ВОСП пятого поколения достигается производительность 1 Тбит/с. Работы по повышению скорости передачи продолжаются.
Развитие ВОСП способствует ускорению внедрения всех технологий широкополосного доступа (рис. 1.2.)
Приложения
Интернет IP - Кабельное Видео SMS доступ телефония телевидение по запросу Ширина полосы. Мбит/с Рис. 1.2. Развитие магистральных и городских волоконно-оптических сетей |
В докладе на 29-й Европейской конференции по оптической связи (ЕСОС 2003) Маури - цио Дечина рассмотрел перспективы развития сетей связи и информационных услуг в ближайшем десятилетии. Во-первых, характерной чертой будут оставаться экспоненциальный рост как потребностей в информации, так и технических возможностей их удовлетворения.
Свидетельством этого является соответствующий рост ключевых технических показателей, таких как мощность процессоров, объем памяти, скорость обмена информацией, физические размеры и др. В то же время важным моментом будет перевод всех информационно-телекоммуникационных услуг на использование интернет-протокола, в том числе приложений реального времени (голос, видео).
На транспортном уровне глобальных и городских сетей связи вполне определенно будут доминировать оптические (фотонные) технологии передачи информации, развитие же сетей доступа будет характеризоваться конкуренцией оптических технологий и различных беспроводных технологий, которые могут использоваться либо как дополнение, либо как альтернатива волоконной оптике. К быстро развивающимся технологиям беспроводного доступа относятся следующие: Wi-Fi, Ultra Wide Band, Ad Hoc Networks, Sensor networks, RFID и др.