Фотоколориметрический метод анализа
Метод основан на количественном определении веществ на основании измерений интенсивности окраски или светопоглощения окрашенных соединений в видимой области спектра в соответствии с оптическим законом Бугера - Ламберта - Беера. Минимальная ошибка измерения возможна при использовании значений оптических плотностей в пределах 0,3 - 0,7.
Фотоколориметрические методы, в которых измеряется свето - поглощение окрашенных растворов, используют сравнительно несложную аппаратуру и при этом обеспечивают достаточную точность измерений (±1-2 % отн.). В большинстве фотоколориметров используется длина волны света в видимой области, монохроматизация осуществляется с помощью светофильтров:
Важнейшие измерительные элементы фотоколориметров |
Для обеспечения максимальной точности и чувствительности необходимо выбирать спектральную область по возможности с более интенсивным поглощением, что достигается правильным подбором светофильтров. Светофильтры - это жидкие или твердые среды, обладающие избирательным пропусканием излучения в достаточно узком интервале длин волн. В качестве светофильтров используют окрашенные растворы некоторых веществ и оптические стекла, интерференционные светофильтры и диспергирующие призмы. Последние характеризуются более высокой степенью монохроматизации. Ширина пропускания определенного спектрального участка (линейная дисперсия) светофильтров колеблется от 100 до 20-40 нм; в призменных и дифракционных приборах - от 0,5 до 2 нм.
Важнейший элемент фотоколориметров фотоэлемент преобразует световую энергию, проходящую через исследуемый окрашенный раствор, в электрическую. Сила возникающего фототока (чувствительность фотоэлемента) зависит от длины волны падающего света и температуры.
Измерительные кюветы - это прямоугольные со строго параллельными стенками или цилиндрические сосуды с определенным расстоянием между стенками или крышками. Стеклянные кюветы пропускают все лучи видимого света, кварцевые - видимые, УФ-лучи и часть ИК-лучей. В зависимости от интенсивности окраски раствора для измерения выбирают кювету с большей или меньшей толщиной слоя, чтобы достичь оптимального интервала оптической плотности.
Различают прямые и косвенные фотоколориметрические измерения. Широкое применение прямых измерений в концентрационном анализе основано на прямой зависимости количества поглощенной энергии от концентрации поглощающего вещества в растворе.
Косвенные методы основаны на образовании в системе комплексных или внутрикомплексных (хелатных) соединений достаточно высокой устойчивости в результате реакции определяемого иона М с реактивом Р. Повышенная устойчивость комплекса способствует более полному связыванию определяемого иона М реактивом Р, увеличению точности и чувствительности измерений, снижению влияния посторонних ионов, присутствующих в растворе. Важнейшим требованием является постоянство состава окрашенных соединений, обусловливающее стабильность интенсивности окраски раствора и, как следствие, оказывающее влияние на точность измерений.
Изменение состава окрашенного комплекса может быть обусловлено ступенчатым характером его образования и диссоциации, разложением во времени, присутствием посторонних веществ, взаимодействующих с определяемым ионом Мили реактивом Р, влиянием pH среды. Существенным фактором является качество реактива, используемого для проведения цветной реакции. Если комплекс высокопрочный и отсутствуют компоненты, реагирующие с ионом М, то избыток реактива по сравнению со стехиометрически рассчитанным должен составлять 30-50 %. Если прочность окрашенного соединения невысока или из-за его диссоциации определяемый ион связывается не полностью, количество используемого реагента должно превышать стехиометрическое примерно на один порядок.
Наибольшее распространение метод фотоколориметрии нашел для проведения качественного и сортового анализа исходных ингредиентов, применяемых в производстве и переработке латексов и коллоидно-химических свойств последних.