Физические свойства и структурные характеристики
• Под истинной плотностью (кг/м3) понимают массу единицы объема абсолютно плотного материала:
Е = rnx/Vu
Где Mi — масса материала, кг; Vi — объем материала в плотном состоянии,, м3.
Значения истинной плотности некоторых строительных материалов приведены в табл. 1.1.
Таблица 1.1. Истинная плотность строительных материалов
|
• Под средней плотностью[1] ео (кг/м3) понимают массу единицы объема материала (изделия) в естественном состоянии (с пустотами и порами):
Ео = rrh/Vi,
Где т} — масса материала, кг; Vx — объем материала, м3.
Средняя плотность одного и того же вида материала может быть разной в зависимости от пористости и пустотности.
• Сыпучие материалы (песок, щебень, цемент и др.) характеризуются насыпной плотностью — отношением массы зернистых и порошкообразных материалов ко всему занимаемому ими объему, включая и пространство между частицами. От плотности материала в значительной мере зависят его технические свойства, например прочность, теплопроводность. Этими данными Пользуются при определении толщины ограждающих конструкций отапливаемых зданий, размера строительных конструкций, расчетах транспортных средств, подъемно-транспортного оборудования и др. Значения средней плотности строительных материалов находятся в широких пределах (табл. 1.2).
Плотность зависит от пористости и влажности материала. С увеличением влажности плотность материала увеличивается. Показатель плотности является характерным и для оценки экономичности.
Таблица 1.2. Средняя плотность некоторых строительных материалов
|
• Пористостью (%) материала называют степень заполнения его объема порами:
Где Qo — объемная плотность материала, кг/м3; q — плотность абсолютно плотного материала, кг/м3.
Поры — это мелкие ячейки в материале, заполненные воздухом или водой. Поры бывают открытые и закрытые, мелкие и крупные. Мелкие поры, заполненные воздухом, придают строительным материалам теплоизоляционные свойства. По величине пористости можно приближенно судить о других важных свойствах материала: плотности, прочности, водопоглощении, долговечности и др. Для конструкций, от которых требуется высокая прочность или водонепроницаемость, применяют плотные материалы, а для стен зданий — материалы со значительной пористостью, обладающие хорошими теплоизоляционными свойствами.
Открытая пористость равна отношению суммарного объема всех пор, насыщающихся водой, к общему объему материала:
Где mi и т2 — масса образца в сухом и насыщенном водой состоянии.
Открытые поры сообщаются с окружающей средой и могут сообщаться между собой, они заполняются водой при погружении в ванну с водой.
Давление ртути, МПа в материале обычно име-
5 10 50 100 500 W00 5000 ются открытые и закрытые
Поры. В звукопоглощающих материалах специально создаются открытая пористость и перфорация для большего поглощения звуковой энергии.
Закрытая пористость по размерам и распределению пор характеризуется: а) интегральной кривой распределения объема пор по их радиусам в единице объема (рис. 1.1) и б) дифференциальной кривой распределения объема пор по их радиусам (рис. 1.2).
Пористость, полученная с помощью ртутного поромера, позволяет определить размер и объем пор каждой величины и оценить форму их. Ртуть не смачивает поры большинства строительных материалов и проникает в них при повышенном давлении, что следует из уравнения
Pd = — 4а cos Э,
Где Р — прилагаемое давление; D — диаметр пор; а — поверхностное натяжение ртути; Э — краевой угол смачивания ртути и испытуемого материала.
Из уравнения видно, что при нулевом давлении несмачи- вающая жидкость не будет проникать в поры. На рис. 1.3 приведено соотношение между давлением и диаметром пор.
На рис. 1.1 показаны интегральные кривые распределения пор по их размерам для четырех различных материалов. По оси х отложены радиусы пор, а по оси у — объем пор данного размера (он равен объему ртути, проникшей в образец). Кривая 1 характерна для материалов с большим объемом крупных пустот (более 10 мкм). Пунктиром показана кривая гистерезиса. Кривая 2 получена для порошка с большим объемом пустот (4...6 мкм) между зернами. Кривая 3 характерна для материала с мелкой пористостью, а кривая 4 — для материала с однородной структурой и порами 0,02...0,04 мкм.
Дифференциальная кривая распределения объема пор V по их размерам (см. рис. 1.2)
DVjdr = fV(r),
ВО 20 5 2 0,6 О? №№ 0,том Радиус пустот и пар, мкм |
Рис. 1.1. Интегральные кривые распределения пор по радиусам (пунктиром показана кривая гистерезиса) |
Где DV/Dr — тангенс угла наклона касательной к интегральной кривой.
Па
I
«а
Радиус Nop |
/ w т Ладленив ртути, МПа(1д-масшта5) |
Рис. 1.3. График зависимости между давлением ртути (в поромере) и размером пор |
Рис. 1.2. Дифференциальная кривая распределения пор по радиу- 1 сам |
Л» §
Площадь под дифференциальной кривой (заштрихована на рис. 1.2) равна суммарному объему пор в единице объема материала.
Удельную поверхность порового пространства определяют, используя средний условный радиус пор или адсорбционными методами (по адсорбции водяного пара, азота или другого инертного газа).
• Удельная поверхность (см2/г) пропорциональна массе адсорбированного водяного пара (газа), необходимой для покрытия мономолекулярным слоем всей внутренней поверхности пор (в 1 г на 1 г сухого материала):
А = aN кгп! Ш2,
Где Oi — поверхность, покрываемая одной адсорбированной моЛекулой, для молекулы воды а^ — 10,6-Ю-16 см2; JVA — число Авогадро, Ад = 6,06 • 1023; т { — масса и тг — молекулярная масса адсорбированного водяного пара (газа).
Свойства строительного материала определяются его составом, структурой и прежде всего значением и характером пористости.
• Пустотность — количество пустот, образующихся между зернами рыхлонасыпанного материала (песка, щебня и т. п.) или имеющихся в некоторых изделиях, например в пустотелом кирпиче, панелях из железобетона. Пустотность песка и щебня составляет 35...45%, пустотелого кирпича — 15...50%.
• Водопроницаемость — способность материала поглощать воду при увлажнении и отдавать ее при высушивании. Насыщение материала водой может происходить при действии на него воды в жидком состоянии или в виде пара. В связи с этим соответственно различают два свойства материала: гигроскопичность и водопоглощение.
• Гигроскопичность — свойство материала поглощать водяные пары из воздуха и удерживать их вследствие капиллярной конденсации. Она зависит от температуры воздуха, его относительной влажности, вида, количества и размера пор, а также от природы вещества. Одни материалы энергично притягивают своей поверхностью молекулы воды, и их называют гидрофильными, другие отталкивают воду, и их относят к гидрофобным. Отдельные гидрофильные материалы способны растворяться в воде, тогда как гидрофобные стойко сопротивляются действию водной среды. При прочих равных условиях гигроскопичность материала зависит от его природы, величины поверхности, структуры (поры и капилляры). Материалы с одинаковой пористостью, но имеющие более мелкие поры и капилляры, оказываются более гигроскопичными, чем крупнопористые материалы.
• Водопоглощение — способность материала впитывать и удерживать воду. Характеризуется оно количеством воды, поглощаемой сухим материалом, погруженным полностью в воду, и выражается в процентах от массы. Водопоглощение (% по массе)
Wm = [(m2 — тх)/т{ 100, или водопоглощение (кг/м3 по объему)
Wv = (т2 — Tn{)/V, Где т2 — масса материала в насыщенном водой состоянии, кг; Т — масса материала в сухом состоянии, кг; V — объем матеРиала в естественном состоянии, м3.
Водопоглощение всегда меньше истинной пористости, так как часть пор оказывается закрытой, не сообщающейся с окружающей средой и недоступной для воды. Объемное водопоглощение всегда меньше 100%, а водопоглощение по массе у очень пористых материалов может быть более 100%.
Водопоглощение строительных материалов изменяется главным образом в зависимости от объема пор, их вида и размеров. Влияют на величину водопоглощения и природа вещества, степень гидрофильности его.
В результате насыщения водой свойства материалов значительно изменяются: увеличиваются плотность и теплопроводность, а в некоторых материалах (древесине, глине) увеличивается объем (они разбухают), понижается прочность вследствие нарушения связей между частицами материала проникающими молекулами воды.
Отношение предела прочности при сжатии материала, насыщенного водой, /?Нас к пределу прочности при сжатии материала в сухом состоянии Rcyx называется коэффициентом размягчения:
^разм ^иас/^сух-
Этот коэффициент характеризует водостойкость материала. Для легкоразмокаемых материалов (глина) kpa3M = 0, для материалов (металл, стекло), которые полностью сохраняют свою прочность при действии воды, /гразм = 1. Материалы с /гразм ^ 0,8 относят к водостойким; материалы с /гразм <С 0,8 в местах, подверженных систематическому увлажнению, применять не разрешается.
• Влагоотдача — способность материала отдавать влагу. Материалы, находясь на воздухе, сохраняют свою влажность только при условии определенной, так называемой равновесной относительной влажности воздуха. Если же последняя оказывается ниже этой равновесной влажности, то материал начинает отдавать влагу в окружающую среду (высушиваться). Скорость влагоотдачи зависит, во-первых, от разности между влажностью материала и относительной влажностью воздуха — чем она больше, тем интенсивнее происходит высушивание; во-вторых, на влагоотдачу влияют свойства самого материала, характер его пористости, природа вещества. Материалы с крупными порами и гидрофобные легче отдают воду, чем мелкопористые и гидрофильные.
В естественных условиях влагоотдача строительных мате* риалов характеризуется интенсивностью потери влаги при относительной влажности воздуха 60% и температуре 20°С.
В воздухе в естественных условиях всегда содержится влага. Поэтому влажный материал высушивается при этих условиях не полностью, а только до влажности, называемой равновесной. Состояние материала при этом является воздушно-сухим. Древесина в комнатных условиях, где относительная влажность не Превышает 60%, имеет влажность 8... 10%, наружные стены зданий— 4...6%. С изменением относительной влажности воздуха изменяется и влажность материалов (если последние гидрофильные) .
• Воздухостойкость — способность материала длительно выдерживать многократное систематическое увлажнение и высушивание без значительных деформаций и потери механической прочности. Материалы по-разному ведут себя по отношению к действию переменной влажности: разбухают при увлажнении, дают усадку при последующем высыхании, иногда возникает и коробление материала. Систематическое увлажнение и высушивание вызывают знакопеременные напряжения в материале строительных конструкций и со временем приводят к потере ими несущей способности (разрушению). Бетон в таких условиях склонен к разрушению, так как при высыхании цементный камень сжимается, а заполнитель практически не реагирует; в результате в цементном камне возникают растягивающие напряжения, он сжимается и отрывается от заполнителя. Древесина при изменении влажности подвергается знакопеременным деформациям. Повысить воздухостойкость материалов можно путем введения гидрофобных добавок, придающих материалу водоотталкивающие свойства.
• Водопроницаемость — способность материала пропускать воду под давлением. Водопроницаемость характеризуется колиЧеством воды, прошедшей в течение 1 ч через 1 м2 площади испытуемого материала при давлении 1 МПа. Плотные материалы (сталь, стекло, битум, большинство пластмасс) водонепроницаемы.
• Морозостойкость — способность насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и значительного снижения прочности. Систематические наблюдения показали, что многие материалы в условиях попеременного насыщения водой и замораживания постепенно разрушаются. Разрушение происходит в связи с тем, что вода, находящаяся в порах материала, при замерзании увеличивается в объеме примерно до 9%. Наибольшее расширение воды при переходе в лед наблюдается при температуре —4°С; дальнейшее понижение температуры не вызывает увеличения объема льда. При заполнении пор водой и ее замерзании стенки пор начинают испытывать значительные напряжения и могут разрушаться. Определение степени морозостойкости материала производят путем замораживания насыщенных водой образцов при температуре от —15 до —17°С и последующего их оттаивания. Такую низкую температуру опыта принимают по той причине, что вода в тонких капиллярах замерзает только при —10°С.
Морозостойкость материала зависит от плотности и степени насыщения водой их пор. Плотные материалы морозостойки. Из пористых материалов морозостойкостью обладают только такие, у которых имеются в основном закрытые поры или вода занимает менее 90% объема пор. Материал считают морозостойким, если после установленного числа циклов замораживания и оттаивания в насыщенном водой состоянии прочность его снизилась не более чем на 15%, а потери в массе в результате выкрашивания не превышали 5%. Если образцы после замораживания не имеют следов разрушения, то степень морозостойкости устанавливают по коэффициенту морозостойкости
KF = RF/R„
Где RF — предел прочности при сжатии материала после испытания на морозостойкость, Па; Re — предел прочности при сжатии водонасыщенного материала, Па.
Для морозостойких материалов kF не должен быть менее 0,75. По числу выдерживаемых циклов попеременного замораживания и оттаивания (степени морозостойкости) материаль имеют марки F 10, 15; 25, 35, 50, 100, 150, 200 и более.
В лабораторных условиях замораживание образцов производят в холодильных камерах. Один — два цикла замораживания в камере дают эффект, близкий к (3...5)-годичному действию атмосферы. Существует также ускоренный метод испытания, по которому образцы погружают в насыщенный раствор сернокислого натрия и затем высушивают при температуре
Рнс. 1.4. Зависимость теплопроводности неорганических материалов от
Плотности: / — материалы, насыщенные водой; 2, 3 — воздушно - сухие материалы с разной влажностью; 4 — сухие материалы
100...110°С. Образующиеся при этом в порах камня кристаллы десятиводного сульфата натрия (со значительным увеличением объема) давят на стенки пор еще сильнее, чем вода при замерзании. Такое испытание является особо жестким. Один цикл испытания в растворе сернокислого натрия приравнивается к 5...10 и даже 20 циклам прямых испытаний замораживанием.
Теплопроводность — свойство материала пропускать тепло через свою толщину. Теплопроводность материала оценивают количеством тепла, проходящим через образец материала толщиной 1 м, площадью 1 м2 за 1 ч при разности температур на противоположных плоскопараллельных поверхностях образца ; в 1°С. Теплопроводность материала зависит от многих факторов: природы материала, его структуры, степени пористости, ■ характера пор, влажности и средней температуры, при которой происходит передача тепла. Материалы с закрытыми порами менее теплопроводны, нежели материалы с сообщающимися порами. Мелкопористые материалы имеют меньшую теплопровода ность, чем крупнопористые. Это объясняется тем, что в крупных и сообщающихся порах возникает движение воздуха, сопровождающееся переносом тепла. Теплопроводность однородного материала зависит от плотности (рис. 1.4). Так, с уменьшением плотности материала теплопроводность уменьшается, и наоборот. Общей зависимости между плотностью материала и теплопроводностью не установлено, однако для некоторых материалов, имеющих влажность 1...7% по объему, такая зависимость наблюдается.
На теплопроводность значительное влияние оказывает влажность. Влажные материалы более теплопроводны, нежели сухие. Объясняется это тем, что теплопроводность воды в 25 раз выше теплопроводности воздуха. В табл. 1.3 приведена теплопроводность некоторых строительных материалов.
Теплопроводность характеризует теплофизические свойства материалов, определяя их принадлежность к классу теплоизоляционных (А — до 0,082; Б — 0,082...0,116 и т. д.), конструк - ционно-теплоизоляционных и конструкционных (более 0,210).
Теплопроводность материала можно также характеризовать
— 21 -
Таблица 1.3. Теплопроводность некоторых строительных материалов
|
Термическим сопротивлением (R= 1/А.)—величиной, обратной теплопроводности.
Теплопроводность имеет очень важное значение для материалов, используемых в качестве стен и перекрытий отапливаемых зданий, для изоляции холодильников и различных тепловых агрегатов (котлов, теплосетей и т. п.). От величины теплопроводности непосредственно зависят затраты на отопление зданий, что особенно важно при оценке экономической эффективности ограждающих конструкций жилых домов и др.
R = 6Д,
Где б — толщина слоя, м; к — теплопроводность слоя материала, Вт/(м-с).
Термическое сопротивление — важная характеристика наружных ограждающих конструкций; от нее зависят толщина наружных стен и затраты на отопление зданий.
• Теплоемкость — свойство материала поглощать при нагревании тепло. Характеризуется теплоемкость удельной теплоемкостью. Удельная теплоемкость с [Дж/(кг-°С)] представляет собой количество тепла, необходимое для нагревания 1 кг материала на 1°С:
С = Q/[m{h - Л)],
Где Q — количество тепла, затраченное на нагревание материала от T до /2, Дж; т — масса материала, кг.
Удельная теплоемкость [Дж/(кг-°С)] стали составляет 460, каменных материалов — 755...925; тяжелого бетона — 800...900; лесных материалов — 2380...2720. Теплоемкость материала имеет важное значение в тех случаях, когда необходимо учитывать аккумуляцию тепла, например при расчете теплоустойчивости стен и перекрытий отапливаемых зданий, с целью сохранения температуры в помещении без резких колебаний при изменении теплового режима, при расчете подогрева материала для зимних бетонных работ, при расчете печей и т. д.
Это свойство важно при пожарах, а так как в процессе тушения пожаров применяют воду, то при оценке степени огнестойкости материала действие высокой температуры сочетают с действием воды.
Строительные материалы по огнестойкости делят на несгораемые, трудносгораемые и сгораемые. Несгораемые материалы под воздействием высокой температуры или огня не тлеют и не обугливаются (природные и искусственные неорганические материалы, металлы). Однако одни из этих материалов под воздействием высокой температуры не растрескиваются и не деформируются, например керамический кирпич, а другие, в частности сталь, подвержены значительным деформациям. Поэтому стальные конструкции не могут быть отнесены к огнестойким. Трудносгораемые материалы под воздействием огня или высоких температур обугливаются, тлеют или с трудом воспламеняются, но продолжают гореть или тлеть только при наличии огня (древесина, пропитанная огнезащитными составами). Сгораемые материалы горят и тлеют под воздействием огня или высоких температур и продолжают гореть после устранения огня (все органические материалы, не подвергнутые пропитке огнезащитными составами).
• Огнеупорность — свойство материала противостоять длительному воздействию высоких температур не деформируясь и не расплавляясь. Материалы по степени огнеупорности подразделяют на огнеупорные, тугоплавкие и легкоплавкие. К огнеупорным относят материалы, выдерживающие продолжительное воздействие температуры от 1580°С и выше. Тугоплавкие выдерживают температуру 1350... 1580°С, а легкоплавкие имеют огнеупорность ниже 1350°С.
4 Термическая стойкость материала характеризуется его способностью выдерживать определенное количество циклов резких тепловых изменений без разрушения. Термическая стойкость зависит от степени однородности материала, температурного коэффициента расширения составляющих его частей. Чем меньше коэффициент температурного расширения, тем выше термическая стойкость материала. К термически нестойким материалам можно отнести стекло, гранит.
• Радиационная стойкость — свойство материала сохранять свою структуру и физико-механические характеристики после воздействия ионизирующих излучений. Развитие атомной энергетики и широкое использование источников ионизирующих излучений в различных отраслях народного хозяйства вызывают необходимость оценки радиационной стойкости и защитных свойств материалов. Уровни радиации вокруг современных источников ионизирующих излучений настолько велики, что может произойти глубокое изменение структуры материала. Поток радиоактивного излучения при встрече с конструкциями из данного материала может поглощаться в разной степени в зависимости от толщины ограждения, вида излучения и природы вещества защиты. Для защиты от нейтронного потока применяют материалы, содержащие в большом количестве связанную воду; от у-излучений — материалы с большой плотностью (свинец, особо тяжелый бетон). Связанную воду содержат гидратиро - ванные бетоны, лимонитовая руда (водный оксид железа) и др. Уменьшить интенсивность проникания нейтронного излучения через бетон можно путем введения в него специальных добавок (бора, кадмия, лития).
T Наиболее часто подвергаются действию агрессивных жидкостей и газов санитарно-технические сооружения, канализационные трубы, животноводческие помещения, гидротехнические сооружения (находящиеся в морской воде, имеющей большое количество растворенных солей). Не способны сопротивляться действию даже слабых кислот карбонатные природные каменные материалы — известняк, мрамор и доломит; не стоек к действию концентрированных растворов щелочей битум. Наиболее стойкими материалами по отношению к действию кислот и щелочей являются керамические материалы и изделия, а также многие изделия на основе пластмасс.
• Долговечность — способность материала сопротивляться комплексному действию атмосферных и других факторов в условиях эксплуатации. Такими факторами могут быть: изменение температуры и влажности, действие различных газов, находящихся в воздухе, или растворов солей, находящихся в воде, совместное действие воды и мороза, солнечных лучей. При этом потеря материалом механических свойств может происходить в результате нарушения сплошности структуры (образования трещин), обменных реакций с веществами внешней среды, а также в результате изменения состояний вещества (изменения кристаллической решетки, перекристаллизации, перехода из аморфного в кристаллическое состояние). Процесс постепенного изменения (ухудшения) свойств материалов в эксплуатационных условиях иногда называют старением.
Долговечность и химическая стойкость материалов непосредственно связаны с величиной затрат на эксплуатацию зданий И сооружений. Повышение долговечности и химической стойкости строительных материалов является наиболее актуальной задачей в техническом и экономическом отношениях.