Оптические свойства
Оптическими свойствами материалов называют их способность количественно и качественно изменять световой поток. В результате воздействия материала на световой поток проявляются такие его свойства, как цвет, блеск, прозрачность, белизна, и др. Оптические свойства текстильных материалов имеют существенное значение при оценке внешнего вида, эстетическом восприятии одежды. Они позволяют выявлять, подчеркивать или, наоборот, скрывать фактуру материала, конструктивные особенности изделия, объем фигуры человека.
Световой поток представляет собой видимую часть спектра электромагнитных излучений, имеющих длину волн 400 —700 нм. Световой поток Р (рис. 2.66), падающий на текстильный материал, претерпевает ряд изменений: часть его Рр отражается от поверхности волокон, часть Ра поглощается и часть Рх проходит через материал.
Основными характеристиками световых свойств материалов служат коэффициенты: отражения р, поглощения а и пропускания т. Эти коэффициенты представляют собой отношение соответственно отраженного Рр, поглощенного Ра и пропущенного Рх потоков излучения к падающему потоку:
Р = Рр/Р; а = PJP-, т = PJP.
На показатели характеристик оптических свойств существенное влияние оказывают такие факторы, как природа волокон и нитей, структура волокон, нитей и материалов.
Рис. 2.66. Прохождение светового потока через текстильный материал |
Отражение светового потока может быть зеркальным, когда световой поток изменяет свое направление, но остается в плоскости падения, и рассеянным в разных направлениях. Это зависит от характера поверхности волокон и их расположения в материале. Так, волокна с гладкой, ровной поверхностью в большей степени обладают зеркальным отражением, чем волокна, имеющие шероховатую неровную поверхность (шерсть, профилированные волокна и т. п.). Материалы, в которых волокна в нитях расположены параллельно (комплексные нити пологой крутки), а переплетения имеют прямолинейные перекрытия нитей (сатиновое, атласное переплетения в тканях, переплетения сукно, шарме в трикотажных полотнах), преимущественно зеркально отражают световой поток. Материалы, имеющие в своей структуре сильно изогнутые волокна и нити (например, текстурированные нити, пряжу аппаратного прядения, нити креповой крутки)
Переплетения с большим числом изгибов нитей, отражают световой поток рассеянно. Следует также отметить анизотропию в ха - зактере отражения светового потока текстильными материалами: когда плоскость падения светового потока совпадает с продольным направлением волокон и нитей, преобладает зеркальное отражение, когда же она совпадает с поперечным направлением волокон и нитей — рассеянное. По изменению коэффициента отражения р можно обнаружить дефекты внешнего вида материала, j Световой поток, проходящий через волокно, изменяется качественно и количественно: часть Ра поглощается веществом волокла, Рр и Р" диффузионно рассеиваются и частично проходят через волокно. Диффузионное рассеивание светового потока обусловлено неравномерностью строения волокна, которое, как известно, имеет структурные элементы различной плотности, часто неравномерно и неплотно расположенные по толщине волокна.
Поглощение светового потока может быть равномерным, когда [ролны всех длин спектра поглощаются в одинаковой степени, и .избирательным, когда преимущественно поглощаются волны определенных длин (непоглощенная часть светового спектра в этом {случае отражается). Поглощающая способность волокон и нитей {определяется химическим составом и молекулярным строением рещества волокон и красителя (или пигмента). Красители и пигменты проявляют наибольшую способность к избирательному поглощению светового потока. Величина избирательного поглощения зависит, кроме того, от количества и характера распределения частиц красителя в волокнах, прозрачности и равномерности Структуры последних.
В материалах редкой структуры часть падающего светового потока проходит через промежутки между волокнами и нитями (сквоз- |йые поры), не изменяясь качественно и количественно.
Цвет. Человек, рассматривающий материал со стороны падаю - jero потока излучений, воспринимает световой поток как отра - кенный и диффузионно-рассеянный вверх, что вызывает у него |>щущение цвета.
Если материал равномерно поглощает поток излучений, то вос - ринимаемый световой поток вызывает у человека ощущение того 1и иного ахроматического цвета (от белого до черного) в зависимости от степени поглощения падающего потока излучений. При Полном отражении возникает ощущение белого цвета, при неполном поглощении — серого цвета (различных оттенков), а при полном — черного.
При избирательном поглощении диффузионно-рассеянный све - эвой поток состоит в основном из излучений, имеющих определенную длину волн. В этом случае воспринимаемый световой по - Эк дает ощущение хроматического цвета, причем излучения раз - *чных длин волн вызывают разные цветовые ощущения.
Зрительное восприятие цвета — сложный психофизический процесс, слагающийся из логической обработки качественной и количественной информации, получаемой в результате преобразования видимого излучения зрительным аппаратом человека. Возникающее ощущение цвета имеет несколько качественных и количественных характеристик.
Цветовой тон — основная качественная характеристика ощущения цвета, которая позволяет устанавливать общее между цветовыми ощущениями образца материала и цветом спектрального излучения. Различие цветовых тонов оценивается цветовыми порогами. В видимом спектре различают около 130 порогов цветового тона, в пурпурных цветах — 20—30 порогов.
Насыщенность — качественная характеристика ощущения цвета, позволяющая различать два ощущения цвета, имеющих один и тот же цветовой тон, но разную степень хроматичности. Эта характеристика оценивается порогами насыщенности. Наибольший порог насыщенности у спектральных цветов; порог насыщенности ахроматического цвета равен нулю.
Светлота — количественная характеристика ощущения цвета, показывающая степень общего между данным цветом и белым. Светлота несамосветящихся тел зависит от их световых свойств, в частности от отражательной способности.
Как отмечалось ранее, восприятие цвета — очень сложный процесс, на который влияет ряд факторов физического, физиологического и психологического характера. Эти факторы необходимо учитывать как в производстве текстильных материалов (при разработке рисунков, подборе цветов, крашении и печатании), так и в производстве швейных изделий (при моделировании, конструировании и выборе материала для конкретных изделий).
Цвета красные, оранжевые, желтые, желто-зеленые называют теплыми; они в восприятии человека ассоциируются с представлениями о солнечном свете, теплых, нагретых телах. Цвета зелено - голубые, голубые, синие, фиолетовые называют холодными, так как они связаны с представлениями о цвете льда, металла. Белые и теплые цвета яркие, выступающие; они хорошо выявляют поверхность материала, его фактуру, конструктивные элементы изделия, подчеркивают объемность фигуры, придают ей полноту. Темные и холодные цвета, наоборот, скрывают поверхность, объемность материала. Швейные изделия, изготовляемые из материалов светлых и теплых цветов, требуют тщательной обработки, так как малейшие ее неточности будут выглядеть как дефекты внешнего вида изделия.
Понятия теплых и холодных цветов не совпадают с физическими понятиями теплых и холодных окрасок. Теплота солнечного света или нагретого тела обусловливается инфракрасным излучением - Поэтому окраски, отражающие в большей степени инфракрасные лучи, меньше нагревают материал и носят названия холодных, а рКраски, поглощающие инфракрасные лучи, в большей мере нагревают материал и поэтому называются теплыми. Очевидно, для летнего сезона следует рекомендовать материалы с холодной окраской, а для осенне-зимнего — с теплой.
Существенно влияют на восприятие цвета характер освещения, его спектральный состав и мощность. При смене источника освещения может произойти изменение светлоты, насыщенности и гона ивета. При солнечном освещении теплые цвета воспринимаются менее насыщенными и менее светлыми, а холодные — более светлыми, чем при вечернем освещении. Поэтому для изделий, надеваемых в яркий, солнечный день весенне-летнего сезона, рекомендуются материалы насыщенных цветов и рисунков. При смене источника освещения или увеличении его мощности без изменения спектрального состава изменяется цветовой тон, что необходимо учитывать при определении назначения материала (например, для дневных или вечерних платьев). Влияние источников освещения учитывают также при определении оптических свойств материалов, предусматривая источники с определенными, стандартизированными характеристиками излучения.
Восприятие цвета зависит от состава воспринимаемого светового потока, соотношения хроматического и ахроматического излучений, что определяется характером поверхности материала и оптическими свойствами волокон. На прозрачных волокнах цвет ощущается более насыщенным, так как они в большей мере избирательно поглощают световой поток, чем непрозрачные. На гладкой блестящей поверхности цвет воспринимается более ярким, гветлым, чем на неровной. Цвет материалов, имеющих большую толщину или ворсовую поверхность, способствующую многократному отражению излучений волокнами, воспринимается более насыщенным, менее светлым. Изменение длины или наклона вор - Еа меняет условия отражения потока излучений, а вместе с этим и цвет материала. По этой же причине мы отличаем цвет более изношенных участков одежды от цвета менее изношенных.
На ощущение цвета влияет расположение цветов — так называ - Ьмый одновременный контраст, который приводит к изменению Как светлоты, насыщенности, так и цветового тона. При расположении рядом двух разноярких участков ахроматических цветов изменяется их светлота: у границы раздела менее светлый участок Становится светлее и, наоборот, более темный участок — темнее. Серый рисунок на черном фоне повышает свою светлоту. Аналогичную картину наблюдают при соприкосновении хроматических Цветов с ахроматическими. Чем больше различие в светлоте, тем рильнее световой контраст.
1 При соприкосновении хроматических цветов воспринимаемый Цветовой поток как бы суммируется и ощущается как новый цвет.
Например, на красном фоне оранжевый цвет желтеет, желтыц зеленеет, зеленый голубеет. Одновременный контраст широко используется в текстильном производстве при выполнении рисунков на материалах, а также в швейном производстве при подборе комплектов одежды, деталей изделий, фурнитуры и т. п. При использовании одновременного контраста принимают во внимание не только соотношение цветов, но и размеры участков цветов. При этом учитывают законы гармонии цвета, т. е. такое сочетание цветов, которое вызывает положительную эстетическую оценку, воспитывает чувство красоты.
При изготовлении текстильных материалов и швейных изделий существенное значение имеет точная оценка цветового различия По тону, насыщенности и светлоте. Необходимость оценки цветового различия возникает в разных ситуациях: во-первых, при воспроизведении цвета стандартного образца в процессе окрашивания текстильных материалов, когда необходимо подобрать красители таким образом, чтобы цвет окрашенного образца был тождествен цвету эталона. Во-вторых, такая оценка нужна при установлении разнооттеночное™ материала, которая возникает в результате изменения условий или нарушения технологических режимов крашения и отделки и выражается в наличии участков материала, различающихся по цвету. Разнооттеночность материала значительно затрудняет технологический процесс изготовления швейных изделий, в частности расчет кусков для настила, раскрой полотен в настиле и комплектование деталей. Поэтому разнооттеночность материала должна контролироваться как при его производстве, чтобы оперативно устранять вызывающие ее причины, так и при изготовлении швейных изделий, чтобы не допускать появления разнооттеночное™ в стачиваемых деталях.
Цветовое различие выявляется и при оценке устойчивости окраски материала к различным факторам воздействия: свету, влажности, теплоте, химическим веществам, находящимся в атмосфере, моющим препаратам, потовыделениям и т. д. Изменение цвета под действием этих факторов происходит в результате изменения состояния молекул красителя и химических процессов, приводящих к деструкции красителя. Степень протекания этих процессов зависит от интенсивности и продолжительности действия факторов, а также устойчивости красителя.
Фотохимический процесс выцветания, происходящий при действии видимого излучения, очень сложен. Энергия поглощенной части потока излучений вызывает возбуждение молекул красителя, увеличивает скорость их движения. При этом возникают вторичные процессы (часто окислительного характера), приводящие к деструкции красителя, особенно в присутствии влаги или кислорода воздуха. Подобные процессы протекают и при действии теплоты, энергия которого также вызывает тепловое движение молекул красителя и способствует его деструкции. Изменение цвета может носить обратимый или необратимый характер. В первом случае изменяется состояние молекул красителя, наблюдается их тепловое движение; по окончании действия возбуждающего фактора (света, тепла) молекулы возвращаются в первоначальное состояние и, следовательно, цвет восстанавливается. Например, при утюжильной обработке изделия часто наблюдается кратковременное изменение цвета материала, который восстанавливается при его охлаждении. Однако более длительное или интенсивное тепловое воздействие может вызвать необратимые процессы деструкции красителя, что приведет к появлению цветовых пятен на изделии.
При эксплуатации швейных изделий имеет значение и прочность связи красителя с волокном, которая может нарушаться под действием воды, химических препаратов, механических факторов. В результате происходит частичное удаление красителя из структуры волокна, что вызывает изменение цвета и окрашивание соприкасающихся поверхностей.
Устойчивость окраски текстильных материалов оценивается по комплексу физико-механических и химических воздействий: света, светопогоды, увлажнения, сухого и мокрого трения, пота, мыльного раствора, химической чистки, утюжильной обработки. Комплекс физико-механических и химических воздействий для конкретных материалов устанавливается в зависимости от их назначения, условий, в которых они находятся при изготовлении и эксплуатации изделий.
Однозначное определение цвета с помощью точных характеристик — основная задача колориметрии. В повседневной жизни цвет характеризуют цветовыми ощущениями, словарным определением, что является довольно субъективным и неточным методом оценки цвета.
Более точный метод колориметрии — визуальное сравнение образца с эталоном, при котором тождество ощущений воспринимается как тождество цветов. Для этих целей используют атласы цветов, которые представляют собой набор цветовых образцов, расположенных по определенной системе. Атлас цветов играет роль визуального цветоизмерительного инструмента. Наибольшее распространение в мировой практике получили атласы Манселлы и Рихтера и ряд других. В России во ВНИИМ им. Д. И.Менделеева созданы атласы цветов АЦ-100 и АЦ-1000, включающие соответственно 450 и 1000 стандартных цветовых образцов. Для координации работы предприятий, связанной с выбором цветов, в 1986 г. разработан атлас цветов, включающий в себя 1808 образцов цвета.
Визуально оценивают разнооттеночность, сравнивая цвета различных участков материала, и устойчивость окраски к различным воздействиям, сопоставляя степень посветления окраски материала и закрашивания белого материала с эталонами соответствующих шкал посветления и закрашивания.
Для оценки отраженного от материала светового потока, его спектрального состава используют систему цветовых характеристик, включающих в себя доминирующую длину волны а, чистоту цвета р и яркость В. Хроматический цвет представляет собой смешивание монохроматического излучения с ахроматическим. Доминирующая длина волны показывает длину волны монохроматического излучения, которое нужно смешать с ахроматическим, чтобы получить цветность данного образца. Ниже приведены длины волн монохроматического излучения (цветов, составляющих белый дневной свет):
Монохрома/пи - Длина
Ческий цвет волны, нм
Красный......................................................... 620—760
Оранжевый...................................................... 590 — 620
Желтый........................................................... 530—590
Зеленый.......................................................... 490-530
Голубой.......................................................... 470-490
Синий............................................................. 430-470
Фиолетовый.................................................... 390 — 430
Соотношение монохроматического и ахроматического излучений определяет чистоту цвета, которая оценивается отношением яркости монохроматического излучения В} к яркости всего воспринимаемого излучения В, %:
Яркость представляет собой интенсивность излучения А/, приходящегося на единицу площади AS, расположенной перпендикулярно направлению света:
B=AI/(AS).
Несамосветящиеся тела, к которым относятся и текстильные материалы, характеризуются коэффициентом /-яркости, который определяется путем сравнения яркости данной поверхности В с яркостью идеально белой поверхности В6, коэффициент отражения которой равен единице:
Г = В/В,.
Любой цвет может быть также выражен через 3 линейно независимых цвета. Независимость этих цветов состоит в том, что кажчыи из них не может быть получен смешиванием двух других цветов - Согласно закону смешивания цветов цвет D можно получить, смепш - вая основные цвета А, В и С соответственно в количествах A, B и с-
D = аА + ЬВ + сС.
В соответствии с гипотезой трехмерного выражения цвета лю - (ОЙ цвет может быть представлен в виде вектора, величина и расположение которого в пространстве определяются системой коор - донат и величинами векторов основных составляющих цветов. Век - оры реальных цветов образуют объем, который носит название (ветового конуса (рис. 2.67). Поверхность АВСО цветового конуса [вляется геометрическим местом векторов монохроматических (ветов, а поверхность А СО — пурпурных цветов, получаемых сме - циванием цветов коротковолновой и длинноволновой частей ви- [имого спектра. Внутри цветового конуса располагаются векторы сальных хроматических цветов, среди которых находится и век - ■ор OD ахроматического цвета.
Цветовым графиком называется плоскость сечения цветового :онуса, проходящая через точки векторов основных цветов рис. 2.68). Он является геометрическим местом точек пересечения :го плоскости векторами цветов. Эти точки пересечения называют ■очками цветности. Вид цветового конуса и цветового графика за - исит от выбранной системы координат, однако основные харак - еристики и соотношения в конусе и графике любого вида со - раняются.
Y Рис. 2.67. Цветовой конус |
О |
Рис. 2.68. Цветовой график |
При колориметрических измерениях синтезируют цвет, тожественный с цветом образца, из трех эталонных (единичных) (ветов и составляют уравнение цвета. Результаты измерений пред - тавляют в виде координат цвета или цветности образца. В зави- имости от выбора единичных цветов получают разные системы [змерений. Наибольшее распространение из этих систем получили истема RGB Международной осветительной комиссии (МКО) и юлее совершенная система AYZ(MKO), принятые как стандартные. )сновные цвета системы RGB задаются как монохроматические [злучения с длинами волн 700 (R), 546 (G) и 435,8 (В) нм, кото-
ла и закрашивания белого материала с эталонами соответствующих шкал посветления и закрашивания.
Для оценки отраженного от материала светового потока, его спектрального состава используют систему цветовых характеристик, включающих в себя доминирующую длину волны X, чистоту цвета р и яркость В. Хроматический цвет представляет собой смешивание монохроматического излучения с ахроматическим. Доминирующая длина волны показывает длину волны монохроматического излучения, которое нужно смешать с ахроматическим, чтобы получить цветность данного образца. Ниже приведены длины волн монохроматического излучения (цветов, составляющих белый дневной свет):
Монохромати - Дшна
Ческий цвет волны, нм
Красный......................................................... 620 — 760
Оранжевый...................................................... 590 — 620
Желтый........................................................... 530-590
Зеленый........................................................... 490-530
Голубой.......................................................... 470-490
Синий............................................................. 430-470
Фиолетовый.................................................... 390 — 430
Соотношение монохроматического и ахроматического излучений определяет чистоту цвета, которая оценивается отношением яркости монохроматического излучения В, к яркости всего воспринимаемого излучения В, %:
Р = MB-JB.
Яркость представляет собой интенсивность излучения А/, приходящегося на единицу площади AS, расположенной перпендикулярно направлению света:
Я= Д//(Д5).
Несамосветящиеся тела, к которым относятся и текстильные материалы, характеризуются коэффициентом /-яркости, который определяется путем сравнения яркости данной поверхности В с яркостью идеально белой поверхности В6, коэффициент отражения которой равен единице:
Г = В/В5.
Любой цвет может быть также выражен через 3 линейно независимых цвета. Независимость этих цветов состоит в том, что каждый из них не может быть получен смешиванием двух других цветов - Согласно закону смешивания цветов цвет D можно получить, смешивая основные цвета А, В и С соответственно в количествах A, B и с.
D = аА + ЬВ + сС.
В соответствии с гипотезой трехмерного выражения цвета лю - 1бой ивет может быть представлен в виде вектора, величина и расположение которого в пространстве определяются системой координат и величинами векторов основных составляющих цветов. Векторы реальных цветов образуют объем, который носит название цветового конуса (рис. 2.67). Поверхность АВСО цветового конуса является геометрическим местом векторов монохроматических цветов, а поверхность ЛСО — пурпурных цветов, получаемых смешиванием цветов коротковолновой и длинноволновой частей видимого спектра. Внутри цветового конуса располагаются векторы реальных хроматических цветов, среди которых находится и вектор OD ахроматического цвета.
Цветовым графиком называется плоскость сечения цветового конуса, проходящая через точки векторов основных цветов!(рис. 2.68). Он является геометрическим местом точек пересечения его плоскости векторами цветов. Эти точки пересечения называют точками цветности. Вид цветового конуса и цветового графика зависит от выбранной системы координат, однако основные характеристики и соотношения в конусе и графике любого вида сохраняются.
Рис. 2.67. Цветовой конус |
О |
Рис. 2.68. Цветовой график |
При колориметрических измерениях синтезируют цвет, тождественный с цветом образца, из трех эталонных (единичных) цветов и составляют уравнение цвета. Результаты измерений представляют в виде координат цвета или цветности образца. В зависимости от выбора единичных цветов получают разные системы измерений. Наибольшее распространение из этих систем получили система RGB Международной осветительной комиссии (МКО) и более совершенная система AYZ(MKO), принятые как стандартные. Основные цвета системы RGB задаются как монохроматические излучения с длинами волн 700 (R), 546 (G) и 435,8 (В) нм, кото-
Y
Рые ощущаются как красный, зеленый и синий цвета. Уравнение цвета в этой системе имеет вид
Ц= RR+ GG + ВВ,
А уравнение цветности
RR + gG + ЬВ,
Где R, G, В и г, g, b — координаты цвета и цветности.
Система XYZЗадается через систему RGB с помощью ряда векторных уравнений.
Положенные в основу колориметрии уравнения цвета позволяют объективно и с достаточной точностью описывать и измерять цвет, определять цветовые различия при воспроизведении цвета в процессе крашения, при оценке разнооттеночное™ и устойчивости окраски.
Эти методы определения цвета и цветовых различий позволяют разрабатывать автоматизированные системы контроля разнооттеночное™ в процессе крашения и при приеме текстильных материалов на швейных предприятиях.
Белизна. Для несамосветящихся тел, к которым относятся и текстильные материалы, понятие «светлота» часто заменяется понятием «белизна», которая показывает общее в ощущениях цвета данной и идеальной белой поверхности. В понятие «белый материал» вкладывается представление о поверхности, хорошо рассеивающей световой поток, т. е. имеющей малую степень избирательного поглощения. Белизну текстильных материалов повышают путем химического и физического воздействий (беление, мытье, чистка), подцветкой синими красителями и пигментами, с помощью оптических отбеливающих веществ. Она является одной из важнейших характеристик качества неокрашенных текстильных материалов.
На практике обычно нет четкого различия между светлотой и белизной. Под светлотой чаще всего понимается оценка яркости, а под белизной — коэффициент яркости. Светлота и белизна измеряются порогами различия. В диапазоне от абсолютно черного до идеально белого цветов насчитывают 300 — 400 порогов. Ахроматические (серые) шкалы имеют ступени различия, каждая из которых включает в себя несколько порогов по светлоте (белизне).
Белизна текстильных материалов оценивается коэффициентом яркости г, измеренным при длине волны 540 нм, и коэффициентом подцветки р, рассчитанным как отношение коэффициент^ яркости, измеренных при длине волн 540 и 410 нм:
Р = ^ю/'мо-
Материалы считаются тождественными по белизне, если коэффициенты их яркости отличаются не более чем на 1 %, а коэфф"~ циенты подцветки — не более чем на 0,03.
Кроме того, белизну текстильных материалов можно оценивать j^o отражательной способности их поверхности:
I со = 100р,./рго,
I-де ю — белизна материала, %; рг — коэффициент отражения образца материала; р„, — коэффициент отражения эталонной белой (щастины.
I Блеск. Это специфическое восприятие человеком светового потока, состоящего из зеркально отраженных и диффузионно-рассеянных излучений. Чем выше составляющая зеркального отражения, тем сильнее блеск материала. Поэтому степень блеска текс - (гильного материала определяется прежде всего характером поверхности волокон и нитей, их расположением в структуре материала. |Блеск поверхности меняется в зависимости от угла наблюдения, расположения зеркально отражающих участков. I Блеск текстильных материалов может быть желательным или Нежелательным явлением в зависимости от назначения материала. Для увеличения блеска при изготовлении материала используют ролокна и нити с гладкой ровной поверхностью, переплетения с Длинными перекрытиями, применяют специальные виды отделки (мерсеризацию, каландрирование) в целях расположения большинства волокон на поверхности в одной плоскости. Чтобы уменьшить блеск материала, необходимо создать условия для увеличения рассеивания светового потока. Для этого, например, при формовании химических волокон в их структуру вводят частицы диоксида титана, которые увеличивают диффузионное рассеивание светового потока. Использование переплетений с частым изгибом нитей, применение операций начесывания и валки способствуют Созданию шероховатости поверхности материала, пространственному расположению волокон, что приводит к многократному отражению светового потока, увеличению его рассеивания. [ При утюжильной обработке и прессовании деталей одежды на Отдельных их участках появляется повышенный блеск (ласы), что рсудшает внешний вид изделия. Причиной появления лас является неравномерность распределения давления прессования по поверхности детали из-за наличия на ней утолщенных участков (у швов, вытачек, карманов и др.). В результате значительного давления волокна на этих участках располагаются преимущественно в одной плоскости, нити сплющиваются, появляются плоские участки с сильным зеркальным отражением. При совместном действии влаги, Оплоты и давления эти изменения поверхности материала могут Быть достаточно устойчивыми. Для устранения появившихся лас Изделие обрабатывают острым паром при одновременном воздействии щеток (отпаривание).
Местный блеск (лоск) появляется на участках материала, подвергающихся в процессе эксплуатации изделия сильному совместному действию давления и трения. Появление лоска связано со сплющиванием нитей, с разрушением в результате изнашивания выступающих на поверхности волокон, в результате чего образуются участки с повышенным зеркальным отражением световою потока.
Блеск текстильных материалов оценивается сравнением отражающих способностей поверхностей образца и эталона (например, стеклянной пластины) или сопоставлением показателей отражения светового потока поверхностью данного материала, определенных при разных углах наклона:
Ф = 101гА, Qi
Где ф — число блеска; а{, а2 — количество отраженного света, падающего на поверхность под углом соответственно 22,5 и 0°.
Установлено соотношение между числом блеска и ощущением блеска человеком:
Число блеска <р Ощущение поверхности
0,5— 1 ..................................... Глубокоматовая
1 —2....................................... Матовая
3 — 4....................................... Полуматовая
4 — 8....................................... Блестящая
8—16....................................... Высокоблестящая
Прозрачность. Она связана с ощущением проходящего через материал потока излучений и дает представление о толщине материала. При рассмотрении материала со стороны выхода светового потока в поле зрения наблюдателя попадает поток, состоящий из потока, диффузионно-рассеянного вниз, потока направленного пропускания и потока, проходящего между волокнами. Таким образом, прозрачность материала определяется как прозрачностью волокон, так и плотностью их расположения в структуре материала. Поток, проходящий между волокнами, в зависимости от плотности материала многократно рассеивается, отражаясь от поверхности волокон. В материалах редкой структуры, например ажурных переплетений, в которых имеются крупные сквозные поры, часть светового потока может проходить, не изменяя своего направления. Коэффициент т пропускания светового потока материалом зависит от поглощательной и отражательной способностей волокон, толщины нитей, вида переплетения и толщины самого материала (с увеличением толщины материала коэффициент стремится к нулю)- Прозрачность материала можно ощущать и со стороны падающего потока света, когда световой поток проходит через материал дважды, отражаясь от поверхности, на которой расположен материал. При этом в определенной мере воспринимаются оптические свойства материала и расположенной под ним поверхности.
Текстильные материалы в процессе их производства, а также изготовления и эксплуатации швейных изделий постоянно соприкасаются с поверхностями однородных и неоднородных тел, В результате возникновения и нарушения контакта на соприкасающихся поверхностях образуются заряды статического электричества, происходит электризация материалов. Способность материалов в определенных условиях накапливать на поверхности статическое электричество называют электризуемостью.
При соприкосновении (трении) текстильных материалов на их поверхности протекает одновременно два процесса: процесс генерации (возбуждения, возникновения) зарядов статического электричества определенной полярности и процесс диссипации (рассеивания) зарядов. Электризация тел обнаруживается, когда равновесие между этими процессами нарушается.
В настоящее время законченной теории, объясняющей электризацию тел, пока нет. Наибольшее распространение получила теория, рассматривающая электризацию как результат перехода носителей зарядов (электронов или ионов) с одной контактирующей поверхности на другую. При соприкосновении диэлектрика, в частности текстильного волокна, с металлом с поверхности последнего сходят электроны, имеющие определенный уровень энергии, и «прилипают» к поверхности диэлектрика, сообщая ему отрицательный заряд. Однако на практике волокна при соприкосновении с металлами могут заряжаться как отрицательно (например, поливинилхлоридные волокна, нитрошелк, фторлон), так и положительно (капроновые, лавсановые, вискозные, природные волокна). Электризацию диэлектрика положительными зарядами в этом случае объясняют присутствием на его поверхности электронов, способных при определенных условиях, покидая диэлектрик, оставлять «дырки», которые можно рассматривать как положительные заряды. В результате отрицательные электроны и положительные «дырки» образуют между контактирующими поверхностями Двойной электрический слой.
Ряд исследователей считает, что причина электризации диэлектриков — ориентация полярных молекул, расположенных на поверхности. Текстильные волокна являются полимерными диэлектриками, макромолекулы которых имеют полярные группы |й, следовательно, постоянные дипольные моменты. На поверхности тел равновесие зарядов нарушено, и поэтому существует определенный поверхностный потенциал, величина которого зависит от поляризации молекул, характера их расположения в поверхностном слое и его плотности. При соприкосновении двух поверхностей возникает электрическое поле, под действием которого происходит ориентация диполей, в результате чего между контактирующими поверхностями возникает двойной электрическим слои При нарушении контакта поверхностей двойное электрическое поле разъединяется и каждая из контактирующих поверхностей оказывается заряженной электричеством противоположного знака.
Электризация материалов представляет собой поверхностны и эффект, возникающий в результате нарушения контакта между двумя поверхностями. При трении электризация повышается вследствие того, что само трение — это ряд последовательных возникновений и нарушений контактов трущихся поверхностей. Повышение поляризации и диполяризации молекул при трении связано с тем, что выделяющаяся теплота способствует большей подвижности диполей и их более легкой ориентации.
Механизм электризации осложняется такими факторами, как электрохимическое сродство, наличие посторонних адсорбированных веществ на поверхности тел, общее состояние поверхностей, приходящих в соприкосновение, состояние внешней среды.
Электризуемость текстильных материалов оценивается величиной заряда, т. е. его плотностью а, Кл/см2, и полярностью заряда (его знак бывает положительным и отрицательным). Так как электризуемость материалов тесно связана с рассеиванием зарядов статического электричества, то одной из основных характеристик электризуемое™ является удельное электрическое сопротивление р, Ом • м.
В связи с тем что в настоящее время нет методики раздельного определения объемного и удельного поверхностного электрического сопротивления для текстильных материалов, практически измеряют суммарное удельное сопротивление. Подобной стандартной характеристикой для тканей и трикотажных полотен служит Удельное поверхностное электрическое сопротивление р5. Под поверхностью в этой характеристике понимается поверхность соприкосновения материала с электродами определенного размера при заданной нагрузке. Следует отметить, что удельное поверхностное сопротивление в значительной степени зависит от площади поверхности соприкосновения материала с электродами прибора: с увеличением этой площади удельное сопротивление уменьшается.
Знак электрического заряда, возникающего на соприкасающихся поверхностях, зависит от химического строения вещества.
Данные табл. 2.20 показывают, какую полярность приобретают материалы, указанные в головке таблицы, при трении их о материалы, указанные в боковике. При трении однородных материалов возникающие заряды по величине очень малы, трудноуловимы, поэтому линию, обозначающую электризацию однородных материалов, называют нейтральной. Она расположена по диагонали таблицы и служит как бы границей, разделяющей отрицательную и положительную полярности материалов при их электризации.
Таблица 2.10
|
Трибоэлектрический ряд материалов (по данным А. И.Меркуловой) |
При трении текстильных материалов величины электрических зарядов резко возрастают в течение первых 10 с, затем увеличение зарядов замедляется, достигая насыщения, после чего наблюдается даже некоторое снижение электризации. Поэтому величину заряда определяют обычно в момент насыщения, т. е. электризуе - мость оценивают по максимальной величине заряда.
Плотность электрического заряда, возникающего на поверхности материала, и его удельное поверхностное электрическое сопротивление зависят прежде всего от волокнистого состава материала (табл. 2.21).
Наименьшей плотностью зарядов и наибольшей электропроводностью характеризуются хлопчатобумажные материалы, а также материалы из гидратиеллюлозных волокон и нитей (вискозных и мед - ноаммиачных). Немного выше плотность возникающих зарядов и удельное поверхностное сопротивление у материалов из природных белковых волокон (шерстяных, шелковых). Материалы из синтетических волокон и нитей проявляют при трении наибольшую электризуемость. Ацетатные и триацетатные материалы занимают
Таблица 2.21 Показатели электризуемости текстильных материалов (по данным Н. М.Хабалошвили)
|
Промежуточное положение. Смешивание натуральных и гидратцел - люлозных волокон и нитей с синтетическими и ацетилцеллюлоз - ными позволяет значительно снизить электризацию материалов.
Процесс рассеивания зарядов с поверхности наэлектризованных материалов зависит от электропроводности волокон, а также от наличия в воздухе заряженных частиц (электронов и ионов) и их подвижности. Текстильные волокна и нити обладают диэлектрическими (электроизолирующими) свойствами, их собственная электропроводность невелика. Однако текстильные волокна и нити способны адсорбировать из окружающего воздуха влагу, в результате чего на их поверхности присутствует моно - или полимолекулярный слой влаги. Помимо этого на поверхности волокон и нитей имеются загрязнения в виде различных солей, играющих роль электролитов. Наличие влаги и электролитов создает условия для резкого увеличения электропроводности материалов, повышения скорости стекания зарядов.
По этой причине у синтетических текстильных материалов, характеризующихся сравнительно низким влагосодержанием, удельное поверхностное электрическое сопротивление возрастает незначительно при уменьшении относительной влажности воздуха от 65 до 35 %. Однако у материалов из натуральных и гидратцеллга - лозных волокон удельное поверхностное сопротивление увеличивается почти на три порядка, при этом ощутимо не изменяется поверхностная плотность заряда.
Таким образом, электризуемость материалов связана не столько с процессом генерации (электризации) зарядов, сколько с процессом их рассеивания. Например, из природных волокон наибольшей способностью к электризации обладает шерсть; электризация вискозных волокон выше, чем полиакрилонитрильных. В то же время электризуемость шерстяных, хлопковых, вискозных волокон, обладающих высокими гидрофильными свойствами, значительно ниже, чем большинства гидрофобных искусственных и синтетических волокон.
Электризуемость текстильных материалов имеет суточные и сезонные колебания, связанные с ионизацией атмосферы. Например, по некоторым данным летом электризуемость материалов выше, так как солнечная активность в этот период сильнее.
На показатель удельного поверхностного электрического сопротивления оказывает влияние характер поверхности материала. Установлено, что наибольшее поверхностное электрическое сопротивление имеют ткани полотняного переплетения, за ними следуют ткани атласного и саржевого переплетений.
В большинстве случаев электризуемость текстильных материа - Юв представляет собой отрицательное явление: она вызывает помехи в технологических процессах производства материалов и изготовления из них швейных изделий. Электризуемость материалов в одежде при ее носке вызывает неприятные ощущения у человека, прилипание изделия к телу, быстрое загрязнение в результат притяжения частиц пыли и т. д. Кроме того, электризуемость материалов, особенно возникающая при трении их о кожу человека, оказывает биологические воздействия на организм человека. Однако механизм этих воздействий еще до конца не выяснен. Известно, что, с одной стороны, положительное электрическое поле на по - верхности кожи человека вызывает ряд патологических реакций со стороны нервной, сердечно-сосудистой и других систем организма; с другой стороны, поле статического электричества отрицательной полярности оказывает благоприятное воздействие на организм. Считают, что предельно допустимой величиной удельного электрического сопротивления, при которой не возникает неудобств при эксплуатации одежды из текстильных материалов, является 10"- 1012 Ом м (ГОСТ 15968-87, ГОСТ Р 50720-94).
Важное значение имеет разработка способов снижения электризуемое™ материалов. Одним из таких способов, нашедших широкое применение, является обработка материалов антистатическими поверхностно-активными веществами (антистатиками). Антистатики, поглощая штагу или вступая с ней во взаимодействие, образуют на поверхности материала слой, способствующий рассеиванию зарядов и тем самым снижению электризуемое™ материала. Другой эффективный способ снижения электризуемое™ текстильных материалов — поверхностная компенсация зарядов. При изготовлении текстильных материалов компоненты волокнистого состава подбирают таким образом, чтобы при трении об определенный материал, в частности о кожу человека, на поверхности волокон образовывались заряды противоположных знаков, в результате чего происходила бы их взаимная нейтрализация. Суммарная величина электростатического заряда такого материала и его полярность зависят от вида компонентов и их процентного соотношения; можно так подобрать волокнистый состав, чтобы суммарный заряд был равен нулю. Степень электризуемое™ можно также снизить, смешивая гидрофильные и гидрофобные волокна (см. табл. 2.21).
Показатели электризуемости текстильных материалов определяют на специальных установках, которые состоят из устройства для трения пробы материала о какую-либо поверхность и прибора для регистрации величины заряда, его полярности и удельного электрического сопротивления.