Классификации физических состояний
Полимеры могут находиться в четырех физических состояниях— одном кристаллическом и трех некристаллических: стеклообразном, высокоэластическом и вязкотекучем. При этом следует иметь в виду, что так называемые частично-кристаллические полимеры никогда полностью не закристаллизованы и содержат значительную часть некристаллической фазы. Полимеры, находящиеся в стеклообразном или кристаллическом состоянии, вследствие их относительно высокой твердости обычно называют твердыми.
С любым из физических состояний связан определенный комплекс физических свойств полимеров, и каждому из указанных состояний соответствует своя область их технического и технологического применения. Физические состояния и границы их существования изучают многими структурными методами. Однако чаще всего эти состояния устанавливают и исследуют по изменениям механических свойств полимеров, которые очень чувствительны и к структурным изменениям, и к релаксационным переходам. Среди разных механических свойств полимеров деформируемость являет
ся их важнейшей инженерной характеристикой. По деформируемости (или податливости) полимеров в широком температурном интервале чаще всего оценивают их основные технологические и эксплуатационные свойства.
г, г Т |
Значение деформируемости определяют методом термомеханических кривых (деформация — температура), предложенным Александровым и Лазуркиным [1.2] для периодических и Каргиным и Соголовой [1.3] для статических деформаций. В настоящее время этот метод получил весьма широкое распространение.
Рис. 1.15. Зависимости деформаций от температуры (термомеханические кривые) полимеров разных типов:
1 —■ некристаллический линейный, 2 —
некристаллический сшитый, 3 — кристаллический линейный (Гс, Гпл, Тф т,
Тх т — соответственно температуры стеклования, плавления, физического и химического течений; / — стеклообразное,
II — высокоэластическое, III — вязкотекучее деформационные физические состояния)
На рис. 1.15 приведены три типа термомеханических кривых. Кривые получены при нагревании с заданной скоростью нагруженного образца полимера. Действующая нагрузка должна быть неизменной (напряжение о=const) и малой по значению, чтобы механические воздействия на полимер не приводили к изменению его структуры. Обычно термомеханические кривые получают при деформации одноосного сжатия, растяжения или сдвига. При низких температурах все полимеры деформируются так же, как и твердые тела. Если полимер не кристаллизуется, то деформация с температурой изменяется по кривой типа 1. Выше температуры стеклования Тс проявляется высокоэластическая деформация (плато высокоэластичности), а затем выше температуры текучести Тт реализуется вязкое течение с накоплением необратимой деформации. Кривая 1 свидетельствует о том, что полимер может находиться в трех физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. Каждому состоянию соответствует свой тип деформации.