Способы формирования пористой структуры ячеистых бетонов
Для создания высокопористой структуры ячеистых бетонов применяются
способы газообразования; пенообразования аэрации и сухой минерализации
пены; комбинированные способы.
Способ газообразования.
Сущность этого способа заключается в том, что газы, выделяющиеся при
взаимодействии газообразователей, вводимых в формовочную массу, между
собой, с минералами цементного клея или при их разложении в щелочной
среде равномерно поризуют формовочную смесь, обладающую определенны-
ми вязкостью и сроками схватывания. При этом основным условием получе-
ния качественной пористой структуры бетонов является совмещение процес-
сов окончания вспучивания смеси и начала ее схватывания с целью фиксации
полученной структуры материала. Газовый способ применяется также для
производства ячеистой керамики, ячеистого стекла и других высокопористых
материалов. В качестве газообразователей можно использовать алюминиевую
и цинковую пудру, перекись водорода, ферросилиций + пудра, кремнеалюми-
натный сплав, КОЖ136-41 или их комбинации и другие вещества. Газообра-
зователи должны отвечать следующим требованиям: они должны выделять
газ равномерно и как можно в большем объеме при необходимой температуре,
сохранять стабильными свои свойства при хранении и транспортировании, не
оказывать негативного влияния на схватывание, твердение материала и его
свойства, а также на рабочих, быть доступным и недорогим.
Для получения ячеистых бетонов в качестве газообразователя применяют
в основном алюминиевую пудру ПАП-1 и ПАП-2 (пудра алюминиевая пиг-
ментная). Количество ее определяется расчетом. Она должна содержать
87…98% активного алюминия, иметь высокую удельную поверхность
(6000…8500 см2/г). Частицы пудры имеют форму лепестков с диаметром
20…50 мкм и толщиной 1…3 мкм, поверхность которых покрыта тонким
слоем парафина или стеарина. Это мешает образованию однородной водной
алюминиевой суспензии. Поэтому перед применением пудру необходимо
прокаливать в печах при температуре равной или менее +200ºС или исполь-
зовать совместно с ПАВ. При прокаливании пудры парафиновая пленка сго-
рает, а поэтому она приобретает способность образовывать с водой однород-
ную суспензию. Но при этом часть алюминия окисляется, что снижает хи-
мическую активность пудры на 10…15%. Кроме того, при прокаливании пуд-
ра может воспламениться, а поэтому прокаливать ее следует медленно и ос-
торожно. Общая продолжительность процесса 8 ч, а выдерживание при мак-
симальной температуре 4…5 ч.
Более удобным и технологичным является способ получения однородной
водной алюминиевой суспензии с добавлением в композицию ПАВ (5% от
массы пудры). ПАВ снижает поверхностное натяжение воды, что способст-
вует хорошему смачиванию частиц пудры и образованию однородной суспен-
зии. Лучше использовать алюминиевую пасту, которую получают смешива-
нием алюминиевой пудры с водным раствором, например, сульфанола (в 1 л
раствора содержится 25 г сульфанола). При взаимодействии пудры с Са(ОН)2,
который образуется в процессе взаимодействия силикатов цемента с водой
или же специально вводится в формовочную массу образуется водород:
2Al + 3Ca(OH)2 + 6H2O = 3CaO · Al2O3 · 6H2O + 3H2.
Интенсивность реакции зависит от степени дисперсности пудры и чис-
тоты поверхности ее частиц, температуры и щелочности среды (35…45ºС).
Чем больше удельная поверхность пудры, чище поверхность ее частиц, выше
температура смеси (в определенных пределах) и ее щелочность, тем полнее
протекает реакция и больше выделяется газа. Скорость газовыделения можно
замедлять (Например, при снижении температуры смеси или введении в
нее азотной кислоты) и увеличивать путем введения в массу NaOH(0,5% Ц),
молотого угля, ферросилиция или вибрации смеси.
NaOH также взаимодействует с алюминиевой пудрой и при этом выде-
ляется дополнительное количество водорода:
2Al + 6NaOH + nH2O = 3Na2O · Al2O3 · nH2O + 3H2.
При вибрировании смеси происходит непрерывное обновление поверхности
соприкосновения реагирующих веществ, что способствует ускорению процес-
са газовыделения.
Возможно в качестве газообразователя использование перекиси водорода
(пергидроля), который в щелочной среде и при нагревании выделяет кисло-
род:
2H2O2 → 2Н2О + О2.
Но этот газообразователь практически не используется по следующим причи-
нам:
1) При хранении перекись водорода не сохраняет свои свойства пос-
тоянными. При воздействии на пергидроль солнечных лучей и теп-
ловой энергии или при соприкосновении с металлами (кроме алю-
миния) он разлагается. Поэтому хранить его следует в прохладном
месте и перевозить в алюминиевой или стеклянной таре;
2) При попадании на кожу человека пергидроль может вызвать ожоги,
а поэтому при работе с ним надо соблюдать соответствующие меры
предосторожности (использовать спецодежду, защитные очки, ре-
зиновые перчатки и сапоги).
Недостатки способа газообразования:
1) Получается неоднородная по высоте пористая структура бетона с
большим объемом сообщающихся пор (до 50%);
2) Алюминиевая пудра сравнительно дорогая, пожаро и взрывоопас-
ная;
3) Имеет место определенная технологическая сложность при исполь-
зовании пудры для приготовления газобетона (специальный поря-
док введения пудры в смесь при ее перемешивании, смесь должна
иметь строго требуемую температуру и достаточную щелочность,
неуправляемость процессом газовыделения после введения пудры
в смесь).
Способ пенообразования, аэрации или сухой минерализации пены.
В этом случае пористая структура ячеистого бетона (пористость до 90%)
получается в результате смешивания формовочной массы с заранее приго-
товленной технической пеной или же сухой минерализации пены, или при
интенсивном перемешивании смеси " формовочная масса плюс раствор пено-
образователя ".Полученная структура материала фиксируется за счет схваты-
вания и затвердевания вяжущих веществ.
Одним из главных компонентов смеси при таком способе порообразова-
ния является пена. Пена – это двухфазная система, состоящая из жидкой и
газообразной фаз. Пена – это грубодисперсная высококонцентрированная
система, в которой дисперсная фаза – газ, дисперсионная среда – жидкость в
виде тонких пленок. Если концентрация газа невелика, то пузырьки газа
имеют шарообразную форму и свободно перемещаются в жидкости. Такую
массу еще нельзя назвать пеной. К собственно пенам относится система с
содержанием воздуха до 99% и выше, ячейки которой представлены много-
гранниками разных форм и различных размеров (рис. )
Рисунок
Для получения пены применяют специальные пенообразователи – поверх-
ностно-активные вещества, придающие воде способность при интенсивном
перемешивании превращаться в пену. Физическая сущность этого процесса
заключается в следующем. Молекулы воды связаны друг с другом силами
взаимного притяжения. Каждая молекула воды внутри жидкости находится
в состоянии равновесия. На поверхности жидкости, т. е. на границе раздела
фаз жидкости и воздуха, это равновесие сил нарушается, так как молекулы
тонкого поверхностного слоя не испытывает воздействия сил молекулярного
притяжения со стороны воздуха. В результате образуется тонкий поверхност-
ный слой воды, обладающий свободной поверхностной энергией, которая
характеризуется поверхностным натяжением и оказывает существенное дав-
ление на внутренние слои жидкости. Под воздействием этого давления из
воды вытесняются любые, попадающие в нее микрообъемы воздуха. Добав-
ление же к воде пенообразователя снижает величину поверхностного натяже-
ния воды, а следовательно и силу ее сжатия поверхностным слоем. Благодаря
этому при взбалтывании композиции " вода + пенообразователь " образуется
пена. Давление воздуха в ячейках пены больше атмосферного, поэтому пленки
жидкости, образующие оболочки вокруг воздушных ячеек, находятся в рас-
тянутом состоянии. В соответствии с формулой Лапласа:
АР= 2δ/r, чем меньше размеры воздушных
Ячеек, тем больше в них давление воздуха, тем устойчивее пена. Качество
пенообразователя характеризуется его пенистостью, а пены – пеноустойчи-
востью. Пенистость характеризует выход пены. Она определяется кратностью
пены, т. е. отношением объема полученной пены из 1 кг пенообразователя
15..20 л). Пеноустойчивость определяется сохранением ячеистой структуры
во времени, например, величиной оседания столба пены в единицу времени
(час – не более 10 мм). Пенистость и пеноустойчивость зависят от вида и
концентрации пенообразователя. Добавляя к пенообразователю активаторы и
стабилизаторы, можно значительно повысить как пенистость, так и стабиль-
ность пены. В качестве активаторов пенообразования можно использовать
более эффективные пенообразователи, а в качестве стабилизаторов пены
клеи, жидкое стекло, протеин, латекс СКС-65ГП и другие вещества. Основные
требования к пенообразователям:
1) При небольших концентрациях резко снижать поверхностное на-
тяжение воды и образовывать большое количество стабильной
пены;
2) Не оказывать негативного влияния на сроки схватывания формо-
вочной массы, на процесс твердения вяжущего и не снижать проч-
ности материала;
3) Сохранять стабильными во времени свои свойства;
4) Быть не токсичными, не оказывать вредного влияния на рабочих;
5) Быть недефицитными и дешевыми.
Смолосапониновый и клееканифольный пенообразователи менее эффек-
тивны, так как незначительно снижают поверхностное натяжение воды (с 74
до 50 мН/м), не сохраняют стабильными во времени свои свойства, сложны
в приготовлении. Лучшими являются синтетические пенообразователи:
прогресс, поток, ТЭАС, ТЭАС-М, сампо, каскад-1,2, морпен, новостром, нео-
пор, унипор, ПО-6к, ПО-3к и другие. Они снижают поверхностное натяжение
до 27…35 мН/м.
Положительные стороны способа пенообразования:
1) В пенобетоне больше замкнутых пор, меньше водопоглощение,
более однородная структура;
2) Пенообразователи не опасны в обращении, дешевле алюминиевой
пудры;
3) Пенная технология бетона проще, не требует специального режи-
ма введения порообразователя в смесь, тепловой энергии для
подогрева смеси, форм и создания дополнительной щелочности
среды.
В то же время метод пенообразования в чистом виде более капризен по
сравнению с газовым, что связано с проблемой устойчивости пен и оседания
пенобетонной массы. Чтобы исключить это негативное явление, требуются
такие пенообразователи, которые образовывали бы повышенное количество
высокостабильной технической пены, а частицы твердой фазы имели бы не-
большую плотность и как можно меньший размер (менее 70 мкм). К тому же,
существующие пенообразователи негативно влияют на процессы схватывания
и твердения вяжущих веществ, прочность и долговечность материала. Кроме
того, для получения однородной пеномассы требуется повышенное количество
воды, что также отрицательно сказывается на прочности пенобетона.