Геотермальные тепловые насосы

Что такое низкопотенциальная энергия Земли

Низкопотенциальная энергия Земли (НГР) — это тепло грунта, грунтовых вод и поверхностных водоемов, аккумулированная в поверхностных слоях земной коры.

Эта энергия может с успехом использоваться для обеспечения тепло - и хладоснабжения (кондиционирования), горячего водоснаб­жения зданий и сооружений всех типов, а также энергоснабжения технологических процессов (www. cleandex. ru).

Технология их освоения заключается в использовании систем извлечения энергии, ее обработки и доставки теплоносителя к потре­бителю. Главным компонентом подобных систем являются геотер­мальные тепловые насосы. Пример использования теплового насоса в доме приведен на рис. 6.6.

Геотермальные тепловые насосы

Рис. 6.6. Пример использования теплового насоса в доме

0

Определение.

Геотермальные тепловые насосы (ГТН) — это устройства, осу­ществляющие обратный термодинамический цикл, благодаря чему низкопотенциальная энергия переносится на более высокий уровень.

Идея теплового насоса высказана полтора века назад британским физиком Уильямом Томсоном (более известный как лорд Кельвин). Это придуманное им устройство он назвал «умножителем тепла».

Помимо геотермального тепла, источником энергии для тепловых насосов может служить тепло сточных и оборотных вод, что позво­ляет параллельно решать проблему эксплуатации вторичных энерго­носителей.

На сегодняшний день используются:

♦ парокомпрессионные геотермальные тепловые насосы (ПТН), работающие на хладонах;

♦ адбсорционные геотермальные тепловые насосы (АТН), в кото­рых рабочими веществами выступают вода и водный раствор бромистого лития.

Н

Примечание.

Однако, в связи с меньшей эффективностью и сложностью кон­струкции АТН не получили распространения.

Принцип роботы парокомпрессионного теплового насоса

Тепловой насос — это «холодильник наоборот», отмечается на www. avante. com. ua. В обоих устройствах основными элементами явля­ются испаритель, компрессор, конденсатор и дроссель (регулятор потока), соединенные трубопроводом, в котором циркулирует поток хладагента.

Хладагенты — это вещества, способного кипеть при низкой тем­пературе и меняющее свое агрегатное состояние с газового в одной части цикла, на жидкое — в другой. Просто в холодильнике главная партия отводится испарителю и отбору тепла, а в тепловом насосе — конденсатору и передаче тепла.

Функция бытового холодильника сводится к охлаждению продук­тов, и его сердцем является теплоизолированная камера, откуда тепло «откачивается» (отбирается кипящим в теплообменнике-испарителе хладагентом) и через теплообменник-конденсатор «выбрасывается» в помещение (задняя стенка холодильника довольно теплая на ощупь).

В тепловом насосе главным становится теплообменник, с которого тепло «снимается» и используется для обогрева дома, а второстепен­ная «морозилка» размещается за пределами здания.

Схематично тепловой насос можно представить в виде системы из замкнутых контуров.

Внешний контур (коллектор) представляет собой уложенный в землю или в воду (например, полиэтиленовый) трубопровод, в кото­ром циркулирует незамерзающая жидкость — антифриз. Источником низкопотенциального тепла может служить грунт, скальная порода, озеро, река, море и даже выход теплого воздуха из системы вентиля­ции какого-либо промышленного предприятия.

Во второй контур, где циркулирует хладагент, как и в бытовом холодильнике, встроены теплообменники — испаритель и конденса­тор, а также устройства, которые меняют давление хладагента — рас­пыляющий его в жидкой фазе дроссель (узкое калиброванное отвер­стие) и сжимающий его уже в газообразном состоянии компрессор.

Рабочий цикл выглядит так (рис. 6.7). Жидкость хладагента про­давливается через дроссель, ее давление падает, и она поступает в испаритель, где вскипает, отбирая теплоту, поставляемую коллекто­ром из окружающей среды. Далее газ, в который превратился хла­дагент, всасывается в компрессор, сжимается и, нагретый, выталки­вается в конденсатор. Конденсатор является теплоотдающим узлом теплонасоса: здесь происходит процесс получение теплоты — теплота

Геотермальные тепловые насосы Геотермальные тепловые насосы Подпись: Выход теплоносителя Вход теплоносителя
Подпись: Испаритель
Геотермальные тепловые насосы

Рис. 6.7. Схема работы теплового насоса

принимается водой в системе отопительного контура. При этом газ охлаждается и конденсируется, чтобы вновь подвергнуться разряже­нию в расширительном вентиле и вернуться в испаритель. После этого рабочий цикл начинается сначала.

Чтобы компрессор работал (поддерживал высокое давление и цир­куляцию), его надо подключить к электричеству. Но на каждый затра­ченный киловатт-час электроэнергии тепловой насос вырабатывает 2,5—6 киловатт-часов тепловой энергии. Соотношение вырабаты­ваемой тепловой энергии и потребляемой электрической называется коэффициентом трансформации (или коэффициентом преобразова­ния теплоты) и служит показателем эффективности теплового насоса. Эта величина зависит от разности уровня температур в испарителе и конденсаторе: чем больше разность, тем меньше эта величина.

По этой причине тепловой насос должен использовать по возмож­ности большее количество источника низкопотенциального тепла, не стремясь добиться его сильного охлаждения. В самом деле, при этом растет эффективность теплового насоса, поскольку при слабом охлаж­дении источника тепла не происходит значительного роста разницы температур.

По этой причине тепловые насосы делают так, чтобы масса низ­котемпературного источника тепла была значительно большей, чем нагреваемая масса. В этом состоит одно из важнейших отличий тепло­вого насоса от традиционных (топливных) источников тепла, в кото­рых вырабатываемая энергия зависит исключительно от теплотвор­ной способности топлива. По этой причине тепловой насос в каком-то смысле «привязан» к источнику низкопотенциального тепла, имею­щего большую массу.

Эта проблема может быть решена введением в тепловой насос системы массопереноса, например, системы прокачки воды. Так устроена система центрального отопления Стокгольма.

Комментарии закрыты.